【題目】足球運動是一項古老的體育活動,眾多的資料表明,中國古代足球的出現(xiàn)比歐洲早,歷史更為悠久,如圖,現(xiàn)代比賽用足球是由正五邊形與正六邊形構(gòu)成的共32個面的多面體,著名數(shù)學(xué)家歐拉證明了凸多面體的面數(shù)(F),頂點數(shù)(V),棱數(shù)(E)滿足F+V-E=2,那么,足球有______.個正六邊形的面,若正六邊形的邊長為,則足球的直徑為______.cm(結(jié)果保留整數(shù))(參考數(shù)據(jù)

【答案】20 22

【解析】

首先根據(jù)足球表面的規(guī)律,設(shè)正五邊形為塊,正六邊形為塊,列出方程組,解方程組即可.分別計算正六邊形和正五邊形的面積,從而得到足球的表面積,再利用球體表面積公式即可得到足球的直徑.

因為足球是由正五邊形與正六邊形構(gòu)成,

所以每塊正五邊形皮料周圍都是正六邊形皮料,

每兩個相鄰的多邊形恰有一條公共邊,每個頂點處都有三塊皮料,

而且都遵循一個正五邊形,兩個正六邊形結(jié)論.

設(shè)正五邊形為塊,正六邊形為塊,有題知:

,解得.

所以足球有個正六邊形的面.

每個正六邊形的面積為.

每個正五邊形的面積為.

球的表面積

.

所以,.

所以足球的直徑為.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若處導(dǎo)數(shù)相等,證明:為定值,并求出該定值;

(2)已知對于任意,直線與曲線有唯一公共點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)),已知有且僅有3個零點,下列結(jié)論正確的是(

A.上存在,滿足

B.有且僅有1個最小值點

C.單調(diào)遞增

D.的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E),它的上,下頂點分別為A,B,左,右焦點分別為,若四邊形為正方形,且面積為2.

(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)存在斜率不為零且平行的兩條直線,,它們與橢圓E分別交于點C,DM,N,且四邊形是菱形,求出該菱形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于不同的兩點.

(1)如果直線過拋物線的焦點,求的值;

(2)如果,證明直線必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】個人所得稅是國家對本國公民、居住在本國境內(nèi)的個人的所得和境外個人來源于本國的所得征收的一種所得稅.我國在1980910日,第五屆全國人民代表大會第三次會議通過并公布了《中華人民共和國個人所得稅法》.公民依法誠信納稅是義務(wù),更是責(zé)任現(xiàn)將自2013年至2017年的個人所得稅收入統(tǒng)計如下

并制作了時間代號x與個人所得稅收入的如如圖所示的散點圖:

根據(jù)散點圖判斷,可用①y=menx與②作為年個人所得稅收入y關(guān)于時間代號x的回歸方程,經(jīng)過數(shù)據(jù)運算和處理,得到如下數(shù)據(jù):

以下計算過程中四舍五入保留兩位小數(shù).

1)根據(jù)所給數(shù)據(jù),分別求出①,②中y關(guān)于x的回歸方程;

2)已知2018年個人所得稅收人為13.87千億元,用2018年的數(shù)據(jù)驗證(1)中所得兩個回歸方程,哪個更適宜作為y關(guān)于時間代號x的回歸方程?

3)你還能從統(tǒng)計學(xué)哪些角度來進一步確認(rèn)哪個回歸方程更適宜? (只需敘述,不必計算)

:對于一組數(shù)據(jù)其回歸直線的斜率和截距的最小二乘估計分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),對任意的都有,且當(dāng)時,,則當(dāng)時,方程的所有根之和為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角、、所對的邊分別為、,,當(dāng)角取最大值時,的周長為,則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的右焦點F為拋物線的焦點,點M在第一象限的交點,且

(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;

(Ⅱ)若,過焦點F的直線l相交于A,B兩點,已知,求取得最大值時直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案