已知是定義在上的不恒為零的函數(shù),且對定義域內(nèi)的任意x, y, f (x)都滿足
(1)求f (1)、f (-1)的值;     
(2)判斷f (x)的奇偶性,并說明理由;
(3)證明:為不為零的常數(shù))
(1)∴f (1)="0" ;f (-1)=0.(2)函數(shù)上的奇函數(shù).
本試題主要是考查了函數(shù)的奇偶性和函數(shù)的賦值法思想的運(yùn)用。
(1)根據(jù)已知條件,對于x,y賦值得到結(jié)論。令x=y=1時,有
(2)∵f(x)對任意x,y都有
∴令x=t,y=-1,有
代入得
(3)對于難以用一般方法證明的自然數(shù)命題用數(shù)學(xué)歸納法證明即可
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)判斷f(x)在上的單調(diào)性,并證明你的結(jié)論;
(Ⅱ)若集合A="{y" | y=f(x),},B=[0,1], 試判斷A與B的關(guān)系;
(Ⅲ)若存在實(shí)數(shù)a、b(a<b),使得集合{y | y=f(x),a≤x≤b}=[ma,mb],求非零實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列命題:
①偶函數(shù)的圖像一定與軸相交;  ②定義在上的奇函數(shù)必滿足;
既不是奇函數(shù)又不是偶函數(shù);
,則的映射;
上是減函數(shù).
其中真命題的序號是(把你認(rèn)為正確的命題的序號都填上)       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)。
(Ⅰ)若當(dāng)時,的最小值為-1,求實(shí)數(shù)k的值;
(Ⅱ)若對任意的,均存在以為三邊邊長的三角形,求實(shí)數(shù)k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)在直角坐標(biāo)系中,畫出函數(shù)大致圖像.
(2)關(guān)于的不等式的解集一切實(shí)數(shù),求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

、已知向量="(1,2)," =(-2,1),k,t為正實(shí)數(shù),向量 = +(t+1), =-k+
(1)若,求k的最小值;
(2)是否存在正實(shí)數(shù)k、t,使?  若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是偶函數(shù),則,的大小關(guān)系為( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1) 設(shè),,當(dāng)時,求的單調(diào)區(qū)間和值域;
(2)設(shè)為偶數(shù)時,,,求的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果函數(shù)在R上單調(diào)遞減,則(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案