【題目】為了貫徹落實黨中央對新冠肺炎疫情防控工作的部署和要求,堅決防范疫情向校園蔓延,切實保障廣大師生身體健康和生命的安全,教育主管部門決定通過電視頻道、網(wǎng)絡(luò)平臺等多種方式實施線上教育教學(xué)工作.某教育機構(gòu)為了了解人們對其數(shù)學(xué)網(wǎng)課授課方式的滿意度,從經(jīng)濟不發(fā)達(dá)的A城市和經(jīng)濟發(fā)達(dá)的B城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如下:
若評分不低于80分,則認(rèn)為該用戶對此教育機構(gòu)授課方式“認(rèn)可”,否則認(rèn)為該用戶對此教育機構(gòu)授課方式“不認(rèn)可”.
(1)請根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此列聯(lián)表分析,能否有95%的把握認(rèn)為城市經(jīng)濟狀況與該市的用戶認(rèn)可該教育機構(gòu)授課方式有關(guān)?
認(rèn)可 | 不認(rèn)可 | 合計 | |
A城市 | |||
B城市 | |||
合計 |
(2)以該樣本中A,B城市的用戶對此教育機構(gòu)授課方式“認(rèn)可”的頻率分別作為A,B城市用戶對此教育機構(gòu)授課方式“認(rèn)可”的概率.現(xiàn)從A城市和B城市的所有用戶中分別隨機抽取2個用戶,用X表示這4個用戶中對此教育機構(gòu)授課方式“認(rèn)可”的用戶個數(shù),求X的分布列.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
【答案】(1)見解析,沒有(2)見解析
【解析】
(1)完善列聯(lián)表,計算,得到答案.
(2)X的可能結(jié)果為0,1,2,3,4,計算概率得到分布列,得到答案.
(1)由題意可得列聯(lián)表如下:
認(rèn)可 | 不認(rèn)可 | 合計 | |
A城市 | 5 | 15 | 20 |
B城市 | 10 | 10 | 20 |
合計 | 15 | 25 | 40 |
,
所以沒有95%的把握認(rèn)為城市經(jīng)濟狀況與該市的用戶認(rèn)可該教育機構(gòu)授課方式有關(guān)
(2)由題知:A城市用戶對此教育機構(gòu)授課方式“認(rèn)可”的概率為;
B城市用戶對此教育機構(gòu)授課方式“認(rèn)可”的概率為.
X的可能結(jié)果為0,1,2,3,4.
;
;
;
;
.
所以的分布列為:
0 | 1 | 2 | 3 | 4 | |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,平面平面,四邊形是邊長為的正方形,是等腰直角三角形,且,平面,.
(1)求異面直線和所成角的余弦值;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小芳、小明兩人各拿兩顆質(zhì)地均勻的骰子做游戲,規(guī)則如下:若擲出的點數(shù)之和為4的倍數(shù),則由原投擲人繼續(xù)投擲;若擲出的點數(shù)之和不是4的倍數(shù),則由對方接著投擲.
(1)規(guī)定第1次從小明開始.
(ⅰ)求前4次投擲中小明恰好投擲2次的概率;
(ⅱ)設(shè)游戲的前4次中,小芳投擲的次數(shù)為,求隨機變量的分布列與期望.
(2)若第1次從小芳開始,求第次由小芳投擲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,為自然對數(shù)的底數(shù)),且在點處的切線的斜率為,函數(shù).
(1)求的單調(diào)區(qū)間和極值;
(2)若,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an},{bn}中,an=bn+n,bn=﹣an+1.
(1)證明:數(shù)列{an+3bn}是等差數(shù)列.
(2)求數(shù)列的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了貫徹落實黨中央對新冠肺炎疫情防控工作的部署和要求,堅決防范疫情向校園蔓延,切實保障廣大師生身體健康和生命的安全,教育主管部門決定通過電視頻道、網(wǎng)絡(luò)平臺等多種方式實施線上教育教學(xué)工作.某教育機構(gòu)為了了解人們對其數(shù)學(xué)網(wǎng)課授課方式的滿意度,從經(jīng)濟不發(fā)達(dá)的A城市和經(jīng)濟發(fā)達(dá)的B城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如下:
若評分不低于80分,則認(rèn)為該用戶對此教育機構(gòu)授課方式“認(rèn)可”,否則認(rèn)為該用戶對此教育機構(gòu)授課方式“不認(rèn)可”.
(Ⅰ)請根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此列聯(lián)表分析,能否有95%的把握認(rèn)為城市經(jīng)濟狀況與該市的用戶認(rèn)可該教育機構(gòu)授課方式有關(guān)?
認(rèn)可 | 不認(rèn)可 | 合計 | |
A城市 | |||
B城市 | |||
合計 |
(Ⅱ)在樣本A,B兩個城市對此教育機構(gòu)授課方式“認(rèn)可”的用戶中按分層抽樣的方法抽取6人,若在此6人中任選2人參加數(shù)學(xué)競賽,求A城市中至少有1人參加的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】這三個條件中任選一個,補充在下面問題中,并給出解答.
設(shè)等差數(shù)列的前項和為,數(shù)列的前項和為,________,,若對于任意都有,且(為常數(shù)),求正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過拋物線的焦點,且與該拋物線交于,兩點,若線段的長是16,的中點到軸的距離是6,是坐標(biāo)原點,則( ).
A.拋物線的方程是B.拋物線的準(zhǔn)線方程是
C.直線的方程是D.的面積是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)若方程f(x)=m有4個不同的實根x1,x2,x3,x4,且x1<x2<x3<x4,則()(x3+x4)=( )
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com