【題目】在數(shù)列{an}{bn}中,anbn+n,bn=﹣an+1.

1)證明:數(shù)列{an+3bn}是等差數(shù)列.

2)求數(shù)列的前n項和Sn.

【答案】1)證明見解析;(2Sn

【解析】

(1)可將bn=﹣an+1代入anbn+n計算可得數(shù)列{an}的通項公式,然后根據(jù)bn=﹣an+1可得數(shù)列{bn}的通項公式,即可計算出數(shù)列{an+3bn}的通項公式,再根據(jù)等差數(shù)列的定義法可證明數(shù)列{an+3bn}是等差數(shù)列;

(2)先根據(jù)(1)的結(jié)果計算出數(shù)列的通項公式,然后根據(jù)通項公式的特點可采用錯位相減法計算出前n項和Sn.

1)證明:由題意,將bn=﹣an+1代入anbn+n,可得

anbn+n=﹣an+1+n,即2ann+1

an,nN*,

bn=﹣an+11nN*,

an+3bn32n,

∵(an+1+3bn+1)﹣(an+3bn)=2﹣(n+1)﹣(2n)=﹣1,

∴數(shù)列{an+3bn}是以﹣1為公差的等差數(shù)列.

2)由(1)知,,

Sn,

Sn

兩式相減,可得

Sn

,/span>

Sn.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān)……”其大意為:“某人從距離關(guān)口三百七十八里處出發(fā),第一天走得輕快有力,從第二天起,由于腳痛,每天走的路程為前一天的一半,共走了六天到達關(guān)口……” 那么該人第一天走的路程為______________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構(gòu)造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構(gòu)成的折線,稱為“一次構(gòu)造”;用同樣的方法把每條小線段重復(fù)上述步驟,得到16條更小的線段構(gòu)成的折線,稱為“二次構(gòu)造”,…,如此進行“次構(gòu)造”,就可以得到一條科赫曲線.若要在構(gòu)造過程中使得到的折線的長度達到初始線段的1000倍,則至少需要通過構(gòu)造的次數(shù)是( .(取,

A.16B.17C.24D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線C的參數(shù)方程為:為參數(shù)).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為.

(Ⅰ)求曲線C的普通方程和直線l的直角坐標方程;

(Ⅱ)設(shè)點P的直角坐標為,若直線l與曲線C分別相交于A,B兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學經(jīng)典《數(shù)書九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點O為球心,AC為直徑的球面交PDM(異于點D),交PCN(異于點C.

1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結(jié)論);若不是,請說明理由;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了貫徹落實黨中央對新冠肺炎疫情防控工作的部署和要求,堅決防范疫情向校園蔓延,切實保障廣大師生身體健康和生命的安全,教育主管部門決定通過電視頻道、網(wǎng)絡(luò)平臺等多種方式實施線上教育教學工作.某教育機構(gòu)為了了解人們對其數(shù)學網(wǎng)課授課方式的滿意度,從經(jīng)濟不發(fā)達的A城市和經(jīng)濟發(fā)達的B城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如下:

若評分不低于80分,則認為該用戶對此教育機構(gòu)授課方式認可,否則認為該用戶對此教育機構(gòu)授課方式不認可”.

1)請根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此列聯(lián)表分析,能否有95%的把握認為城市經(jīng)濟狀況與該市的用戶認可該教育機構(gòu)授課方式有關(guān)?

認可

不認可

合計

A城市

B城市

合計

2)以該樣本中AB城市的用戶對此教育機構(gòu)授課方式認可的頻率分別作為A,B城市用戶對此教育機構(gòu)授課方式認可的概率.現(xiàn)從A城市和B城市的所有用戶中分別隨機抽取2個用戶,用X表示這4個用戶中對此教育機構(gòu)授課方式認可的用戶個數(shù),求X的分布列.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,且離心率為,過其右焦點F的直線交橢圓CM,N兩點,交y軸于E點.若,

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)試判斷是否是定值.若是定值,求出該定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,證明:

2)若只有一個零點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線l的參數(shù)方程為t為參數(shù)),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為

1)求直線l的普通方程和曲線C的直角坐標方程;

2)若直線l與曲線C相交于AB兩點.

查看答案和解析>>

同步練習冊答案