20.若$\frac{2+i}{i}$=1+mi(i是虛數(shù)單位,m∈R),則m=(  )
A.2B.-2C.1D.-1

分析 利用復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等即可得出.

解答 解:∵1+mi=$\frac{2+i}{i}$=$\frac{-i(2+i)}{-i•i}$=-2i+1,
∴m=-2.
故選:B

點評 本題考查了復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,則“3<m<5”是“輸出i的值為5”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}滿足a1=1,an+1=2an(n∈N*),Sn為其前n項和.?dāng)?shù)列{bn}為等差數(shù)列,且b1=a1,b4=S3
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設(shè)cn=$\frac{1}{{{b_n}•{b_{n+1}}}}$,Tn=c1+c2+c3+…+cn,求證:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題中錯誤的是( 。
A.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
B.如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β
C.如果平面α⊥平面β,過α內(nèi)任意一點作交線的垂線,那么此垂線必垂直于β
D.如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.圖1是某學(xué)習(xí)小組學(xué)生數(shù)學(xué)考試成績的莖葉圖,1號到16號同學(xué)的成績依次是A1,A2,…,A16,圖2是統(tǒng)計莖葉圖中成績在一定范圍內(nèi)的學(xué)生情況的程序框圖,那么該程序框圖輸出的結(jié)果是( 。
A.6B.7C.10D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某縣級市在最近一個5年計劃內(nèi)的居民天然氣消耗量y與天然氣用戶數(shù)x的統(tǒng)計數(shù)據(jù)如表:
年份20112012201320142015
x/萬戶11.11.51.61.8
y/萬立方米6791112
(1)檢驗y與x是否線性相關(guān);
(2)若市政府下一步再擴(kuò)大2000戶天然氣用戶,試預(yù)測該市天然氣消耗量將達(dá)到多少萬立方米(精確到0.1).
參考公式:$\overline$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在等差數(shù)列{an}中,4a12=-3a23>0,令bn=$\frac{{a}_{n}{a}_{n+1}}{{a}_{n+2}}$,Sn為{bn}的前n項和,設(shè)S${\;}_{{n}_{0}}$為數(shù)列{Sn}的最大項,則n0=14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若曲線f(x)=aex+bsinx(a,b∈R)在x=0處與直線y=-1相切,則b-a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求經(jīng)過直線x-y-2=0與x+2y-5=0的交點,且與原點的距離為$\sqrt{5}$的直線方程.

查看答案和解析>>

同步練習(xí)冊答案