18.已知x,y滿足約束條件$\left\{{\begin{array}{l}{x≤-1}\\{x-y≥-2}\\{x+y+1≥0}\end{array}}\right.$,則目標(biāo)函數(shù)z=3x+y的取值范圍為( 。
A.[-4,-2]B.[-4,+∞)C.[-3,+∞)D.[-3,-2]

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{{\begin{array}{l}{x≤-1}\\{x-y≥-2}\\{x+y+1≥0}\end{array}}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x-y=-2}\\{x+y+1=0}\end{array}\right.$,解得A($-\frac{3}{2},\frac{1}{2}$),
聯(lián)立$\left\{\begin{array}{l}{x=-1}\\{x-y=-2}\end{array}\right.$,解得B(-1,1).
化目標(biāo)函數(shù)z=3x+y為y=-3x+z,由圖可知,當(dāng)直線y=-3x+z過(guò)A時(shí),直線在y軸上的截距最小,z有最小值為-4,
當(dāng)直線y=-3x+z過(guò)B時(shí),直線在y軸上的截距最大,z有最小值為-2.
∴目標(biāo)函數(shù)z=3x+y的取值范圍為[-4,-2].
故選:A.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.點(diǎn)P是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右支上一點(diǎn),其左,右焦點(diǎn)分別為F1,F(xiàn)2,直線PF1與以原點(diǎn)O為圓心,a為半徑的圓相切于A點(diǎn),線段PF1的垂直平分線恰好過(guò)點(diǎn)F2,則離心率的值為(  )
A.$\frac{3}{2}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)=lnx-x3+2ex2-ax,a∈R,其中e為自然對(duì)數(shù)的底數(shù).
(1)若f(x)在x=e處的切線的斜率為e2,求a;
(2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,已知曲線C1:$\left\{\begin{array}{l}{x=2sinθ}\\{y=acosθ}\end{array}\right.$(θ為參數(shù),a>0)和曲線C2:$\left\{\begin{array}{l}{x=t+1}\\{y=2-2t}\end{array}\right.$(t為參數(shù)).
(Ⅰ)若兩曲線有一個(gè)公共點(diǎn)在y軸上,求a的值;
(Ⅱ)當(dāng)a=2時(shí),判斷兩曲線的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖所示,正三角形ABC所在平面與梯形BCDE所在平面垂直,BE∥CD,BE=2CD=4,BE⊥BC,F(xiàn)為棱AE的中點(diǎn).
(1)求證:DF∥平面ABC;
(2)求證:DF⊥平面ABE;
(3)若直線AD與平面BCDE所成角的正切值為$\frac{{\sqrt{15}}}{5}$,求二面角B-CF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某市為了鼓勵(lì)市民節(jié)約用水,實(shí)行“階梯式”水價(jià),將該市每戶居民的月用水量劃分為三檔:月用水量不超過(guò)4噸的部分按2元/噸收費(fèi),超過(guò)4噸但不超過(guò)8噸的部分按4元/噸收費(fèi),超過(guò)8噸的部分按8元/噸收費(fèi).
(1)求居民月用水量費(fèi)用y(單位:元)關(guān)于月用電量x(單位:噸)的函數(shù)解析式;
(2)為了了解居民的用水情況,通過(guò)抽樣,獲得今年3月份100戶居民每戶的用水量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年3月份用水費(fèi)用不超過(guò)16元的占60%,求a,b的值;
(3)若地區(qū)居民用水量平均值超過(guò)6噸,則說(shuō)明該地區(qū)居民用水沒(méi)有節(jié)約意識(shí)在滿足(2)的條件下,請(qǐng)你估計(jì)A市居民用水是否有節(jié)約意識(shí)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知從圓C:(x+1)2+(y-2)2=2外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,則當(dāng)|PM|取最小值時(shí)點(diǎn)P的坐標(biāo)為(-$\frac{3}{10}$,$\frac{3}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)實(shí)數(shù)λ>0,若對(duì)任意的x∈(0,+∞),不等式eλx-$\frac{lnx}{λ}$≥0恒成立,則λ的最小值為(  )
A.$\frac{1}{e}$B.$\frac{1}{2e}$C.$\frac{2}{e}$D.$\frac{e}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$,則f[f(3)]=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案