16.如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,$QA=AB=\frac{1}{2}PD$.
(1)證明:面PQC⊥面DQC;
(2)求面PAB與面DQC所成銳二面角的余弦值.

分析 (1)以D為原點(diǎn),DA為x軸,DC為y軸,DP為z軸,建立空間直角坐標(biāo)系,利用向量法能證明面PQC⊥面DQC.
(2)求出面PAB的法向量和平面DQC的法向量,利用向量法能求出面PAB與面DQC所成銳二面角的余弦值.

解答 證明:(1)∵四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,$QA=AB=\frac{1}{2}PD$.
∴以D為原點(diǎn),DA為x軸,DC為y軸,DP為z軸,建立空間直角坐標(biāo)系,
設(shè)$QA=AB=\frac{1}{2}PD$=1,則P(0,0,2),Q(1,0,1),C(0,1,0),D(0,0,0),
$\overrightarrow{QP}$=(-1,0,1),$\overrightarrow{QC}$=(-1,1,-1),$\overrightarrow{QD}$=(-1,0,-1),
設(shè)平面PQC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{QP}=-x+z=0}\\{\overrightarrow{n}•\overrightarrow{QC}=-x+y-z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,2,1),
設(shè)平面DQC的法向量$\overrightarrow{m}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{QD}=-a-c=0}\\{\overrightarrow{m}•\overrightarrow{QC}=-a+b-c=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,0,-1),
∵$\overrightarrow{n}•\overrightarrow{m}$=1+0-1=0,
∴面PQC⊥面DQC.
(2)A(1,0,0),B(1,1,0),$\overrightarrow{PA}$=(1,0,-2),$\overrightarrow{PB}$=(1,1,-2),
設(shè)面PAB的法向量$\overrightarrow{p}$=(x1,y1,z1),
則$\left\{\begin{array}{l}{\overrightarrow{p}•\overrightarrow{PA}={x}_{1}-2{z}_{1}=0}\\{\overrightarrow{p}•\overrightarrow{PB}={x}_{1}+{y}_{1}-2{z}_{1}=0}\end{array}\right.$,取z1=1,得$\overrightarrow{p}$=(2,0,1),
平面DQC的法向量$\overrightarrow{m}$=(1,0,-1),
設(shè)面PAB與面DQC所成銳二面角的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{p}|}{|\overrightarrow{m}|•|\overrightarrow{p}|}$=$\frac{1}{\sqrt{2}•\sqrt{5}}$=$\frac{\sqrt{10}}{10}$.
∴面PAB與面DQC所成銳二面角的余弦值為$\frac{{\sqrt{10}}}{10}$.

點(diǎn)評(píng) 本題考查面面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知f(x)=3x-a×3-x是偶函數(shù).則:
(1)a=-1;
(2)$f(x)<\frac{10}{3}$的解集為(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.新定義運(yùn)算:$|\begin{array}{l}{a}&\\{c}&wuu4uks\end{array}|$=ad-bc,則滿足$|\begin{array}{l}{i}&{z}\\{-1}&{z}\end{array}|$=2的復(fù)數(shù)z是1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知$\overrightarrow a$,$\overrightarrow b$是非零向量,且向量$\overrightarrow a$,$\overrightarrow b$的夾角為$\frac{π}{3}$,若向量$\overrightarrow p=\frac{\overrightarrow a}{|\overrightarrow a|}+\frac{\overrightarrow b}{|\overrightarrow b|}$,則$|\overrightarrow p|$=( 。
A.$2+\sqrt{3}$B.$\sqrt{2+\sqrt{3}}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3-3.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某高校從2016年招收的大一新生中,隨機(jī)抽取60名學(xué)生,將他們的2016年高考數(shù)學(xué)成績(jī)(滿分150分,成績(jī)均不低于90分的整數(shù))分成六段[90,100),[100,110)…[140,150),后得到如圖所示的頻率分布直方圖.
(1)求圖中實(shí)數(shù)a的值;
(2)若該校2016年招收的大一新生共有960人,試估計(jì)該校招收的大一新生2016年高考數(shù)學(xué)成績(jī)不低于120分的人數(shù);
(3)若用分層抽樣的方法從數(shù)學(xué)成績(jī)?cè)赱90,100)與[140,150]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至少有1人在分?jǐn)?shù)段[90,100)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)將二次函數(shù)h(x)=x2的圖象先向右平移1個(gè)單位,再向下平移2個(gè)單位得到函數(shù)f(x)的圖象,寫(xiě)出函數(shù)f(x)的解析式,并求出x∈[0,4]時(shí)函數(shù)f(x)的值域.
(2)求f(x)=x2-2ax-1在區(qū)間[0,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)min{p,q}表示p,q兩者中的較小者,若函數(shù)f(x)=min{3-x,log2x},則f(x)的最大值為2,滿足$f(x)<\frac{1}{2}$的集合為{x|0<x<$\sqrt{2}$或x>$\frac{5}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)(x∈R)是奇函數(shù),且當(dāng)x>0時(shí),f(x)=2x-1.
(1)求函數(shù)f(x)的解析式;     
(2)求f(f(-2))的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案