Processing math: 5%
9.已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,若a1=2且數(shù)列{anbn}的前n項和是(2n+1)•3n-1,則數(shù)列{an}的通項公式是an=n+1.

分析 根據(jù)當n=1時,求得b1=4,寫出Tn=(2n+1)•3n-1,Tn-1=(2n-1)•3n-1-1,兩式相減求得:
anbn=4(n+1)•3n-1,得到bn=4•3n-1,an=n+1.

解答 解:{anbn}的前n項和Tn=(2n+1)•3n-1,
{bn}是等比數(shù)列,公比為q,數(shù)列{an}是等差數(shù)列,首項a1=2,公差為d,
a1=2,a1b1=3•3-1,b1=4,
∵a1b1+a2b2+a3b3+…+anbn=(2n+1)•3n-1,
a1b1+a2b2+a3b3+…+an-1bn-1=(2n-1)•3n-1-1,
兩式相減得:anbn=4(n+1)•3n-1,
∴bn=4•3n-1,an=n+1,
故答案為:an=n+1.

點評 本題考查求等差數(shù)列的通項公式,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)y=f(x)滿足f(3+x)=f(1-x)且f(1+x)=f(2-x),求證:y=f(x)是一個周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知直線{x=212ty=1+12t(t為參數(shù))與圓\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right. (θ為參數(shù))相交于A、B兩點,則|AB|的值是\sqrt{14}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知單位向量\overrightarrow{a},\overrightarrow間的夾角為\frac{2π}{3},則|4\overrightarrow{a}-5\overrightarrow|=\sqrt{61}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知直線l:y=x+1與函數(shù)f(x)=eax+b的圖象相切,且f′(1)=e.
(1)求實數(shù)a,b的值;
(2)若在曲線y=mf(x)上存在兩個不同的點A(x1、mf(x1),B(x2,mf(x2))關(guān)于y軸的對稱點均在直線l上,證明:x1+x2>4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an},a1=2,an+1=2an+2n+1,bn=\frac{{a}_{n}}{{2}^{n}},n∈N*
(1)證明數(shù)列{bn}為等差數(shù)列,并求數(shù)列{an}和{bn}通項公式;
(2)求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.若數(shù)列{an}滿足a1=1,an+1-an=2n-1
(Ⅰ)求{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足b1=3,bn+1-bn=2n+3,且cn=\frac{{a}_{n}•_{n}}{n},求數(shù)列{cn}的通項公及前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設(shè)正三棱錐A-BCD的所有頂點都在球O的球面上,BC=1,E、F分別是AB,BC的中點,EF⊥DE,則球O的半徑為( �。�
A.\frac{\sqrt{3}}{3}B.\frac{\sqrt{6}}{4}C.\frac{\sqrt{2}}{2}D.\frac{\sqrt{10}}{4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若實數(shù)x,y滿足約束條件\left\{\begin{array}{l}{x+y-1≥0}\\{x-1≤0}\\{4x-y+1≥0}\end{array}\right.則目標函數(shù)z=\frac{y+1}{x+3}的最大值為( �。�
A.\frac{1}{4}B.\frac{2}{3}C.\frac{3}{2}D.2

查看答案和解析>>

同步練習冊答案