分析 (1)通過將an+1=2an+2n+1兩邊同時(shí)除以2n+1可知數(shù)列{bn}是首項(xiàng)、公差均為1的等差數(shù)列,進(jìn)而計(jì)算可得結(jié)論;
(2)通過(1)、利用等差數(shù)列的求和公式計(jì)算即得結(jié)論.
解答 (1)證明:∵an+1=2an+2n+1,
∴an+12n+1=an2n+1,
又∵bn=an2n,b1=a12=22=1,
∴數(shù)列{bn}是首項(xiàng)、公差均為1的等差數(shù)列,
∴bn=n,an=n•2n;
(2)解:由(1)可知Sn=n(n+1)2.
點(diǎn)評 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,對表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 17 | C. | 40 | D. | 41 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-a)∪(5a,+∞) | B. | (-∞,5a)∪(-a,+∞) | C. | (5a,-a) | D. | (a,-5a) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c>a>b | B. | b>a>c | C. | a>c>b | D. | a>b>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3π | B. | 4\sqrt{3}π | C. | 12π | D. | 48π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | λ≥2 | B. | λ>3 | C. | λ≥3 | D. | λ>2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com