14.已知平面向量$\overrightarrow{a}$=(2,0),$\overrightarrow$=(-1,$\sqrt{3}$),則$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角為(  )
A.$\frac{2π}{3}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{6}$

分析 利用向量夾角公式即可得出.

解答 解:設(shè)$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角為θ,
$\overrightarrow{a}+\overrightarrow$=$(1,\sqrt{3})$,
∴cosθ=$\frac{\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)}{|\overrightarrow{a}||\overrightarrow{a}+\overrightarrow|}$=$\frac{2}{2×\sqrt{{1}^{2}+(\sqrt{3})^{2}}}$=$\frac{1}{2}$,
∵$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$夾角θ的取值范圍為[0,π],
∴$θ=\frac{π}{3}$.
故選:C.

點(diǎn)評(píng) 本題考查了向量夾角公式、數(shù)量積運(yùn)算性質(zhì),考查了推理能力由于計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.《張邱建算經(jīng)》是中國古代數(shù)學(xué)史上的杰作,該書中有首古民謠記載了一數(shù)列問題:“南山一棵竹,竹尾風(fēng)割斷,剩下三十節(jié),一節(jié)一個(gè)圈.頭節(jié)高五寸,頭圈一尺三.逐節(jié)多三分,逐圈少分三.一蟻往上爬,遇圈則繞圈.爬到竹子頂,行程是多遠(yuǎn)?”(注釋:①第一節(jié)的高度為0.5尺;②第一圈的周長(zhǎng)為1.3尺;③每節(jié)比其下面的一節(jié)多0.03尺;④每圈周長(zhǎng)比其下面的一圈少0.013尺) 問:此民謠提出的問題的答案是( 。
A.72.705尺B.61.395尺C.61.905尺D.73.995尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的前 n項(xiàng)和為 Sn,且滿足a1=1,an•an+1=2Sn,設(shè)${b_n}=\frac{{2{a_n}-1}}{{{3^{a_n}}}}$,則數(shù)列{bn}的前 n項(xiàng)和為$1-\frac{n+1}{3^n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.全集為實(shí)數(shù)集R,集合M={x||x|≤3},集合N={x|x<2},則(∁RM)∩N=(  )
A.{x|x<-3}B.{x|-3<x<2}C.{x|x<2}D.{x|-3≤x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知向量$m=({sinx-\sqrt{3}cosx,1}),n=({sin({\frac{π}{2}+x}),\frac{{\sqrt{3}}}{2}})$,若f(x)=m•n.
(I)求f(x)的單調(diào)遞增區(qū)間;
(II)己知△ABC的三內(nèi)角A,B,C對(duì)邊分別為a,b,c,且a=3,f$({\frac{A}{2}+\frac{π}{12}})=\frac{1}{2}$,sinC=2sinB,求A,c,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且2sinCcosB=2sinA+sinB,c=3ab,則ab的最小值是( 。
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{2+\sqrt{3}}{9}$D.$\frac{2-\sqrt{3}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在平面直角坐標(biāo)系xOy中,已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{5}$,從C的右焦點(diǎn)F引漸近線的垂線,垂足為A,若△AFO的面積為1,則雙曲線C的方程為(  )
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1D.x2-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.將函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象向左平移φ(φ>0)個(gè)單位后,恰好得到函數(shù)的y=sin2x的圖象,則φ的最小值為$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.《數(shù)學(xué)九章》中對(duì)已知三角形三邊長(zhǎng)求三角形的面積的求法填補(bǔ)了我國傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開平方得積.”若把以上這段文字寫成公式,即S=$\sqrt{\frac{1}{4}[{c}^{2}{a}^{2}-(\frac{{c}^{2}+{a}^{2}-^{2}}{2})^{2}]}$.現(xiàn)有周長(zhǎng)為4+$\sqrt{10}$的△ABC滿足sinA:sinB:sinC=($\sqrt{2}$-1):$\sqrt{5}$:
($\sqrt{2}$+1),試用以上給出的公式求得△ABC的面積為( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{5}}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案