8.已知三棱臺ABC-A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求證:BC1⊥平面AA1C1C
(2)點D是B1C1的中點,求二面角A1-BD-B1的余弦值.

分析 (1)證明BC1⊥CC1,BC1⊥AC,即可證明BC1⊥平面AA1C1C
(2)以CA,CB所在直線分別為x軸,y軸,點C為原點建立空間直角坐標(biāo)系,求出平面的法向量,即可求二面角A1-BD-B1的余弦值.

解答 (1)證明:梯形BB1C1C中,BB1=CC1=B1C1=2,BC=4得:$∠{C}_{1}CB=60°,B{C}_{1}=2\sqrt{3}$,從而BC1⊥CC1,
因為平面BB1C1C⊥平面ABC,且AC⊥BC,
所以AC⊥平面BB1C1C,因此BC1⊥AC,
因為AC∩CC1=C,所以BC1⊥平面AA1C1C;
(2)解:如圖,以CA,CB所在直線分別為x軸,y軸,點C為原點建立空間直角坐標(biāo)系,則A(6,0,0),B(0,4,0),C(0,0,0),C1(0,1,$\sqrt{3}$),B1(0,3,$\sqrt{3}$),D(0,2,$\sqrt{3}$),A1(3,1,$\sqrt{3}$),
平面BB1D的法向量$\overrightarrow{m}$=(1,0,0),設(shè)平面AB1D的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{3x-y=0}\\{2y-\sqrt{3}z=0}\end{array}\right.$,
令z=$\sqrt{3}$,得$\overrightarrow{n}$($\frac{1}{2},\frac{3}{2}$,$\sqrt{3}$),
所以所求二面角的余弦值是-$\frac{\frac{1}{2}}{\sqrt{\frac{1}{4}+\frac{9}{4}+3}}$=-$\frac{\sqrt{22}}{22}$.

點評 本題考查線面垂直的判定,考查二面角A1-BD-B1的余弦值,考查向量知識的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知全集U={1,2,3,4,5,6,7},集合A={1,3,7},B={x|x=log2(a+1),a∈A},則(∁UA)∩(
(∁UB)=( 。
A.{1,3}B.{5,6}C.{4,5,6}D.{4,5,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=ln$\frac{x}{2}$+$\frac{1}{2}$,g(x)=ex-2,對?m∈R,?n∈(0,+∞)使得g(m)=f (n)成立,則n-m的最小值為( 。
A.-ln 2B.ln 2C.2$\sqrt{e}$-3D.e2-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)=lnx-x+1+a,g(x)=x2ex(e為自然對數(shù)的底數(shù)),若對任意的x1∈[$\frac{1}{e}$,1],總存在x2∈[0,1],使得f(x1)=g(x2)成立,則實數(shù)a的取值范圍是$\frac{1}{e}$≤a≤e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在三棱柱ABCA1B1C1中,側(cè)面ABB1A1為矩形,AB=3,AA1=3$\sqrt{2}$,D為AA1的中點,BD與AB1交于點O,CO⊥側(cè)面ABB1A1
(Ⅰ)證明:BC⊥AB1
(Ⅱ)若OC=OA,求二面角A1-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.等差數(shù)列{an}中,已知an>0,a2+a5+a8=33,且a1+2,a2+5,a3+13構(gòu)成等比數(shù)列{bn}的前三項.
(1)求數(shù)列{an},{bn}的通項公式;
(2)記${c_n}=\frac{a_n}{b_n}+1$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$y=\frac{x}{{{x^2}+a}}$的圖象不可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知平面向量$\vec a,\vec b$的夾角為$60°,\vec a=({\sqrt{3},1}),|\vec b|=1$則$|\vec a+2\vec b|$=(  )
A.2B.$\sqrt{7}$C.$2\sqrt{7}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某市在一次降雨過程中,降雨量y(mm)與時間t(min)的函數(shù)關(guān)系可近似地表示為y=f(t)=$\sqrt{t}$,則在時刻t=40min的降雨強(qiáng)度為(  )
A.40mmB.40$\sqrt{10}$mmC.$\frac{1}{40}$mm/minD.$\frac{\sqrt{10}}{40}$mm/min

查看答案和解析>>

同步練習(xí)冊答案