下列命題中,是平面與平面垂直判定定理的是( 。
A、兩個(gè)平面相交,如果它們所成的二面角是直二面角,那么兩個(gè)平面相互垂直
B、如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直
C、如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于它們交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面
D、如果一個(gè)平面內(nèi)的一條直線(xiàn)垂直于另一平面的兩條相交直線(xiàn),那么這兩個(gè)平面互相垂直
考點(diǎn):平面與平面之間的位置關(guān)系
專(zhuān)題:空間位置關(guān)系與距離
分析:根據(jù)面面垂直的定義,性質(zhì)及判定方法,逐一判斷四個(gè)答案是否是面面垂直的判斷定理,可得答案.
解答: 解:對(duì)于A,兩個(gè)平面相交,如果它們所成的二面角是直二面角,那么兩個(gè)平面相互垂直,是面面垂直的定義,故錯(cuò)誤;
對(duì)于B,如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直,是面面垂直的判定定理,故正確;
對(duì)于C,如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于它們交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面,是面面垂直的性質(zhì)定理,故錯(cuò)誤;
對(duì)于D,如果一個(gè)平面內(nèi)的一條直線(xiàn)垂直于另一平面的兩條相交直線(xiàn),那么這兩個(gè)平面互相垂直,是線(xiàn)面垂直的判定定理,和面面垂直的判定定理的綜合應(yīng)用,故錯(cuò)誤;
故選:B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是面面垂直的定義,性質(zhì)及判定方法,熟練掌握面面垂直的定義,性質(zhì)及判定方法,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,等腰直角△ABC中,已知AB=BC=2,M為AC中點(diǎn),沿BM將它折成二面角,折后A,C間的距離為
2
,則二面角C-BM-A的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱柱ABCD-A1B1C1D1的底面ABCD是邊長(zhǎng)為2
3
的正方形,平面ACC1⊥ABCD,BC1=CC1,直線(xiàn)DB與平面BCC1B1成30°角,
(1)求證:平面BC1D⊥平面ABCD;
(2)求四棱柱ABCD-A1B1C1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的三邊依次為a、b、c,cos(C-
π
3
)=
b+c
2a

(Ⅰ)求A
(Ⅱ)若a=2.S△ABC=
3
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以橢圓
x2
4
+
y2
3
=1的左焦點(diǎn)為焦點(diǎn),以坐標(biāo)原點(diǎn)為頂點(diǎn)的拋物線(xiàn)方程為(  )
A、y2=-4x
B、y2=-2x
C、y2=-8x
D、y=-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用分析法或綜合法證明:當(dāng)x>0時(shí),sinx<x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直三棱柱ABC-A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分別是BC A1A的中點(diǎn).
(1)求證:EF∥平面A1C1B;
(2)求直線(xiàn)EF與平面ABB1A1所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-ex(e為自然對(duì)數(shù)的底數(shù)).
(I)當(dāng)a=
1
e
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間及極值;
(Ⅱ)當(dāng)2≤a≤e+2時(shí),求證f(x)≤2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|x+2|-|x-2|
(I)解不等式f(x)≥2;
(Ⅱ)當(dāng)x∈R,0<y<1時(shí),證明:|x+2|-|x-2|≤
1
y
+
1
1-y

查看答案和解析>>

同步練習(xí)冊(cè)答案