【題目】如圖,在四棱錐中,底面是梯形,,,是正三角形,為的中點,平面平面.
(1)求證:平面;
(2)在棱上是否存在點,使得二面角的余弦值為?若存在,求出的值;若不存在,說明理由.
【答案】(1)見證明(2)見解析
【解析】
(1)先證,由平面平面,可得平面;(2)以點為原點,分別以射線為軸,軸,軸正半軸,建立空間直角坐標系,寫出各點坐標,設(shè),用含的式子求出平面和平面的法向量,由二面角的余弦值為列方程解出,從而得出的值.
(1)證明:因為,且,
所以四邊形是平行四邊形,
從而,且,
又在正三角形中,,
從而在中,滿足,
所以,
又平面平面,平面平面,平面.
所以平面,
(2)由(1)知,且,,平面,
從而平面,
又平面,平面,所以,
以點為原點,分別以射線為軸,軸,軸正半軸,建立空間直角坐標系,,
假設(shè)在棱上存在點滿足題意,
設(shè),則,
,
設(shè)平面的法向量,則,
取得,得,
有平面的一個法向量,所以,
從而,,,
因為,所以,
所以在棱上存在點使得二面角的余弦值為,且.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(2,f(2))處的切線方
程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,
并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,楔形幾何體由一個三棱柱截去部分后所得,底面側(cè)面,,楔面是邊長為2的正三角形,點在側(cè)面的射影是矩形的中心,點在上,且
(1)證明:平面;
(2)求楔面與側(cè)面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓x2+y2=8內(nèi)有一點P0(-1,2),AB為過點P0且傾斜角為α的弦.
(1)當α=時,求AB的長;
(2)當弦AB被點P0平分時,寫出直線AB的方程(用直線方程的一般式表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在ABC中,角A,B,C所對的邊分別為a,b,c,且asinAcosC+csinAcosA=c.
(1)若c=1,sinC=,求ABC的面積S;
(2)若D是AC的中點,且cosB=,BD=,求ABC的三邊長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知多面體中,,,,,為的中點。
(Ⅰ)求證:平面;
(Ⅱ)求異面直線和所成角的余弦值;
(Ⅲ)求直線與平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯誤的是( )
A.命題“若,則”的逆否命題是真命題
B.命題“,”的否定是“,”
C.若為真命題,則為真命題
D.在中,“”是“”的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次購物抽獎活動中,已知某10張獎券中有6張有獎,其余4張沒有獎,且有獎的6張獎券每張均可獲得價值10元的獎品.某顧客從此10張獎券中任意抽取3張.
(1)求該顧客中獎的概率;
(2)若約定抽取的3張獎券都有獎時,還要另獎價值6元的獎品,求該顧客獲得的獎品總價值(元)的分布列和均值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com