求曲線與軸在區(qū)間上所圍成陰影部分的面積S.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
Monte-Carlo方法在解決數(shù)學(xué)問題中有廣泛的應(yīng)用。下面是利用Monte-Carlo方法來計(jì)算定積分?紤]定積分,這時(shí)等于由曲線,軸,所圍成的區(qū)域M的面積,為求它的值,我們?cè)贛外作一個(gè)邊長(zhǎng)為1正方形OABC。設(shè)想在正方形OABC內(nèi)隨機(jī)投擲個(gè)點(diǎn),若個(gè)點(diǎn)中有個(gè)點(diǎn)落入中,則的面積的估計(jì)值為,此即為定積分的估計(jì)值I。向正方形中隨機(jī)投擲10000個(gè)點(diǎn),有個(gè)點(diǎn)落入?yún)^(qū)域M
(1)若=2099,計(jì)算I的值,并以實(shí)際值比較誤差是否在5%以內(nèi)
(2)求的數(shù)學(xué)期望
(3)用以上方法求定積分,求I與實(shí)際值之差在區(qū)間(—0.01,0.01)的概率
附表:
n | 1899 | 1900 | 1901 | 2099 | 2100 | 2101 |
P(n) | 0.0058 | 0.0062 | 0.0067 | 0.9933 | 0.9938 | 0.9942 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江西省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)記曲線在點(diǎn)(其中)處的切線為,與軸、軸所圍成的三角形面積為,求的最大值.
【解析】第一問利用由已知,所以,
由,得, 所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減; 在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;
第二問中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image020.png">,所以曲線在點(diǎn)處切線為:.
切線與軸的交點(diǎn)為,與軸的交點(diǎn)為,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image006.png">,所以,
, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當(dāng)時(shí),有最大值,此時(shí),
解:(Ⅰ)由已知,所以, 由,得, 所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減;
在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;
即函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image020.png">,所以曲線在點(diǎn)處切線為:.
切線與軸的交點(diǎn)為,與軸的交點(diǎn)為,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image006.png">,所以,
, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當(dāng)時(shí),有最大值,此時(shí),
所以,的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:寧夏銀川一中2011-2012學(xué)年高三第六次月考試題(數(shù)學(xué)理) 題型:解答題
已知函數(shù),其中.
(Ⅰ) 求函數(shù)的極小值點(diǎn);
(Ⅱ)若曲線在點(diǎn)處的切線都與軸垂直,問是否存在常數(shù),使函數(shù)在區(qū)間上存在零點(diǎn)?如果存在,求的值:如果不存在,請(qǐng)說明理由.
請(qǐng)考生在22,23,24三題中任選一題做答,如果多做,則按所做的第一題記分.做答時(shí)用2B鉛筆在答題卡把所選題目的題號(hào)涂黑
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com