19.已知集合M={x|x<1},N={x|x(x-1)<0},則M∪N=( 。
A.B.{x|0<x<1}C.{x|x<0}D.{x|x<1}

分析 解不等式得集合N,根據(jù)并集的定義寫出M∪N.

解答 解:集合M={x|x<1},
N={x|x(x-1)<0}={x|0<x<1},
∴M∪N={x|x<1}.
故選:D.

點(diǎn)評(píng) 本題考查了解不等式與并集的運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}滿足an+1=$\frac{a_n^2+9}{{2{a_n}}},{a_{n+1}}<{a_n}$.
(I)求a1的取值范圍;
(II)是否存在m∈N*,使得(am-3)(am+2-3)=(am+1-3)2?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合A={x|x2-9<0},B={-3,-1,0,2,3},則A∩B中元素的個(gè)數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)i為虛數(shù)單位,則復(fù)數(shù)(-2i-1)•i的共軛復(fù)數(shù)為(  )
A.-2-iB.2-iC.-2+iD.2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=|sinx|的周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知x=-3,x=1是函數(shù)f(x)=sin(ωx+φ)(ω>0)的兩個(gè)相鄰的極值點(diǎn),且f(x)在x=-1處的導(dǎo)數(shù)f'(-1)>0,則f(0)=(  )
A.0B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn,an+1=2Sn+1,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an+1,求數(shù)列{$\frac{b_n}{a_n}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若$\overrightarrow{a}$=(1,$\sqrt{5cosα}$),α為銳角,且|$\overrightarrow{a}$|=$\sqrt{2}$,則cos(180°-α)=-$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知點(diǎn)A(1,$\sqrt{2}$)是離心率為$\frac{\sqrt{2}}{2}$的橢圓C:$\frac{x^2}{b^2}+\frac{y^2}{a^2}=1$(a>b>0)上的一點(diǎn),斜率為$\sqrt{2}$的直線BD交橢圓C于B、D兩點(diǎn),且A、B、D三點(diǎn)不重合
( I)求橢圓C的方程;
( II)求證:直線AB,AD的斜率之和為定值
( III)△ABD面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由?

查看答案和解析>>

同步練習(xí)冊(cè)答案