11.祖暅原理:“冪勢既同,則積不容異”.它是中國古代一個涉及幾何體體積的問題,意思是兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)A,B為兩個同高的幾何體,p:A,B的體積不相等,q:A,B在等高處的截面積不恒相等,根據(jù)祖暅原理可知,q是p的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)逆否命題的等價性判斷¬p是¬q的關(guān)系即可.

解答 解:¬q:A,B在等高處的截面積恒相等,¬p:A,B的體積相等,
則由祖暅原理可知,¬p是¬q的必要不充分條件,
則q是p的必要不充分條件,
故選:B

點評 本題主要考查充分條件和必要條件的條件的判斷,根據(jù)逆否命題的等價性進行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.O是平面上一定點,△ABC中AB=AC,一動點P滿足:$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\overrightarrow{AB}$+$\overrightarrow{AC}$),λ∈(0,+∞),則直線AP通過△ABC的①②③④(請在橫線上填入正確的編號)
①外心    ②內(nèi)心    ③重心    ④垂心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.己知(2x-$\frac{1}{\sqrt{x}}$)5
(Ⅰ)求展開式中含$\frac{1}{x}$項的系數(shù)
(Ⅱ)設(shè)(2x-$\frac{1}{\sqrt{x}}$)5的展開式中前三項的二項式系數(shù)之和為M,(1+ax)6的展開式中各項系數(shù)之和為N,若4M=N,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知f(x)是R上的奇函數(shù),當x≥0時,f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),0≤x<1}\\{|x-3|,x≥1}\end{array}\right.$,則函數(shù)y=f(x)-$\frac{1}{2}$的所有零點之和是(  )
A.5+$\sqrt{2}$B.1-$\sqrt{2}$C.$\sqrt{2}$-1D.5-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.若($\frac{x}{2}$-$\frac{2}{x}$)n的展開式中前三項的二項式系數(shù)之和等于22,
(1)求該展開式中含$\frac{1}{{x}^{2}}$項的系數(shù)
(2)求展開式中系數(shù)絕對值最大的項的系數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在如圖的程序框圖中,若輸入的x值為2,則輸出的y值為( 。
A.0B.$\frac{1}{2}$C.-$\frac{3}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在極坐標系中,點M(1,$\frac{π}{2}$),曲線C的方程為ρsin2θ=cosθ.以極點O為原點,以極軸為x軸正半軸建立直角坐標系.
(Ⅰ)求點M的直角坐標及曲線C的直角坐標方程;
(Ⅱ)斜率為-1的直線l過點M,且與曲線C交于A,B兩點,求點M到A,B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.求點M(1,-1,2)到直線L:$\left\{\begin{array}{l}{x-y-z+1=0}\\{2x-y+z-2=0}\end{array}\right.$ 的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.已知a=$\sqrt{5}$,b=3,cosA=$\frac{2}{3}$,則c=( 。
A.3B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

同步練習冊答案