【題目】已知函數(shù),且在和處取得極值.
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),是否存在實(shí)數(shù),使得曲線與軸有兩個(gè)交點(diǎn),若存在,求出的值;若不存在,請(qǐng)說明理由.
【答案】(1);(2)或.
【解析】試題分析:(1)由f(x)=ax3+bx2-2x在x=1或2處取得極值,可得f'(1)=f'(2)=0,故可得到a、b的方程組,求解即可;
(2)曲線y=g(x)與x軸有兩個(gè)交點(diǎn),轉(zhuǎn)化成g(x)=0有兩個(gè)不同的實(shí)數(shù)解,然后利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,然后依題意有g(shù)(x)極大值=0或g(x)極小值=0即可求出t的值.
試題解析:(1),
因?yàn)?/span>在和處取得極值,
所以和是的兩個(gè)根,
則,解得,
經(jīng)檢驗(yàn)符合已知條件,故;
(2)由題意知,
令得, 或,
隨著變化情況如下表所示:
1 | 2 | ||||
- | 0 | + | 0 | - | |
遞減 | 極小值 | 遞增 | 極大值 | 遞減 |
由上表可知,
又取足夠大的正數(shù)時(shí), ,
取足夠小的負(fù)數(shù)時(shí), ,
因此,為使曲線與軸有兩個(gè)交點(diǎn),結(jié)合的單調(diào)性,
得或,
∴或,
即存在,且或時(shí),曲線與軸有兩個(gè)交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對(duì)價(jià)格(單位:千元/噸)和利潤的影響,對(duì)近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如下表:
參考公式: , .
根據(jù)參考公式,以求得
(1)求關(guān)于的線性回歸方程;
(2)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少時(shí),年利潤取到最大值?(保留兩位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某體校為了備戰(zhàn)明年四月份省劃艇單人雙槳比賽,對(duì)本校甲、乙兩名劃艇運(yùn)動(dòng)員在相同條件下進(jìn)行了6次測(cè)試,測(cè)得他們劃艇最大速度單位:數(shù)據(jù)如下:
甲:27,38,30,37,35,31;
乙:33,29,38,34,28,36.
試用莖葉圖表示甲、乙兩名運(yùn)動(dòng)員測(cè)試的成績(jī);
根據(jù)測(cè)試的成績(jī),你認(rèn)為派哪名運(yùn)動(dòng)員參加明年四月份的省劃艇單人雙槳比賽比較合適?并說明你的理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)證明:當(dāng)時(shí), ;
(Ⅲ)確定實(shí)數(shù)的值,使得存在,當(dāng)時(shí),恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為2.
(1)求拋物線的方程;
(2)若直線與圓切于點(diǎn),與拋物線切于點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率是,過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),當(dāng)直線與軸平行時(shí),直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在異于點(diǎn)的定點(diǎn),使得直線變化時(shí),總有?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,∠BAD=120°,對(duì)角線AC與BD交于點(diǎn)O,M為OC中點(diǎn).
(1)求證:BD⊥PM
(2)若二面角O﹣PM﹣D的正切值為2 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】調(diào)查某校 100 名學(xué)生的數(shù)學(xué)成績(jī)情況,得下表:
一般 | 良好 | 優(yōu)秀 | |
男生(人) | 18 | ||
女生(人) | 10 | 17 |
已知從這批學(xué)生中隨機(jī)抽取1名學(xué)生,抽到成績(jī)一般的男生的概率為0.15.
(1)求的值;
(2)若用分層抽樣的方法,從這批學(xué)生中隨機(jī)抽取20名,問應(yīng)在優(yōu)秀學(xué)生中抽多少名?
(3)已知,優(yōu)秀學(xué)生中男生不少于女生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com