【題目】中,角,的對(duì)邊分別為,,,且滿足.

(1)求角的大;

(2)若,求面積的最大值.

【答案】1;2

【解析】

試題(1)由平面向量的數(shù)量積定義與正弦定理進(jìn)行化簡(jiǎn)的值,進(jìn)而求教B;2)利用余弦定理與基本不等式進(jìn)行求解.

試題解析:(1)由題意得(accosBbcosC

根據(jù)正弦定理有(sinAsinCcosBsinBcosC,

所以sinAcosBsinCB),即sinAcosBsinA

因?yàn)?/span>sinA>0,所以cosB

B∈0,π),所以B

2)因?yàn)?/span>||=,所以

b

根據(jù)余弦定理及基本不等式得

6a2c2ac≥2acac=(2ac(當(dāng)且僅當(dāng)ac時(shí)取等號(hào)),即ac≤32).

△ABC的面積SacsinB≤

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,他在所著的《數(shù)學(xué)九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為4,2,則輸出v的值為(
A.66
B.33
C.16
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心在拋物線上,圓過原點(diǎn)且與拋物線的準(zhǔn)線相切.

(1)求該拋物線的方程;

(2)過拋物線焦點(diǎn)的直線交拋物線于, 兩點(diǎn),分別在點(diǎn), 處作拋物線的兩條切線交于點(diǎn),求三角形面積的最小值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)
(1)當(dāng)a=1時(shí),求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在海岸A處,發(fā)現(xiàn)北偏東方向,距離A n mileB處有一艘走私船,在A處北偏西方向,距離A2 n mileC處有一艘緝私艇奉命以n mile / h的速度追截走私船,此時(shí),走私船正以10 n mile / h的速度從B處向北偏東方向逃竄,問緝私艇沿什么方向行駛才能最快追上走私船?并求出所需時(shí)間。(本題解題過程中請(qǐng)不要使用計(jì)算器,以保證數(shù)據(jù)的相對(duì)準(zhǔn)確和計(jì)算的方便)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某連鎖經(jīng)營公司所屬5個(gè)零售店某月的銷售額和利潤額資料如下表:

(1)畫出散點(diǎn)圖;

(2)根據(jù)如下的參考公式與參考數(shù)據(jù),求利潤額y與銷售額x之間的線性回歸方程;

(3)若該公司還有一個(gè)零售店某月銷售額為10千萬元,試估計(jì)它的利潤額是多少?

(參考公式:,其中:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:(x+1)(x-5)≤0,命題q:1-mx<1+m(m>0).

(1)pq的充分條件,求實(shí)數(shù)m的取值范圍;

(2)m=5,如果pq有且僅有一個(gè)真命題,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),且直線與曲線交于兩點(diǎn),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2) 已知點(diǎn)的極坐標(biāo)為,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)開設(shè)甲、乙、丙三門選修課,學(xué)生是否選修哪門課互不影響,已知某學(xué)生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用表示該學(xué)生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.

1)記函數(shù)上的偶函數(shù)為事件,求事件的概率;

2)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案