【題目】選修4-4:坐標(biāo)系與參數(shù)方程:

已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn),極軸與x軸非負(fù)半軸重合,直線l的參數(shù)方程為:t為參數(shù),a∈[0,π),曲線C的極坐標(biāo)方程為:p=2cosθ.

(Ⅰ)寫(xiě)出曲線C在直角坐標(biāo)系下的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線l與曲線C相交PQ兩點(diǎn),若|PQ|,求直線l的斜率.

【答案】I

【解析】

(Ⅰ)由ρ=2cosθ,得ρ2=2ρcosθ,由此能求出曲線C的直角坐標(biāo)方程;

(Ⅱ)把代入x2+y2=2x,整理得t2﹣4tcosα+3=0,由此利用|PQ|,能求出直線l的斜率.

(Ⅰ)∵ρ=2cosθ,

∴ρ2=2ρcosθ.

ρ2x2+y2,ρcosθ=x,得x2+y2=2x

∴曲線C在直角坐標(biāo)系下的標(biāo)準(zhǔn)方程為(x﹣1)2+y2=1;

(Ⅱ)把代入x2+y2=2x,整理得t2﹣4tcosα+3=0,

∴△=16cos2α﹣12>0,即

設(shè)其兩根分別為t1,t2,則t1+t2=4cosα,t1t2=3.

∴|PQ|,

∴直線l的斜率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過(guò)點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。

(1)寫(xiě)出直線l的普通方程和曲線C的直角坐標(biāo)方程:

(2)若成等比數(shù)列,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一場(chǎng)小型晚會(huì)有個(gè)唱歌節(jié)目和個(gè)相聲節(jié)目,要求排出一個(gè)節(jié)目單.

1個(gè)相聲節(jié)目要排在一起,有多少種排法?

2個(gè)相聲節(jié)目彼此要隔開(kāi),有多少種排法?

3)第一個(gè)節(jié)目和最后一個(gè)節(jié)目都是唱歌節(jié)目,有多少種排法?

4)前個(gè)節(jié)目中要有相聲節(jié)目,有多少種排法?

(要求:每小題都要有過(guò)程,且計(jì)算結(jié)果都用數(shù)字表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知長(zhǎng)方體中,底面ABCD的長(zhǎng)AB=4,寬BC=4,高=3,點(diǎn)M,N分別是BC,的中點(diǎn),點(diǎn)P在上底面中,點(diǎn)Q上,若,則PQ長(zhǎng)度的最小值是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正四棱椎P-ABCD中,底面ABCD的邊長(zhǎng)為2,側(cè)棱長(zhǎng)為.

(I)若點(diǎn)EPD上的點(diǎn),且PB∥平面EAC.試確定E點(diǎn)的位置;

(Ⅱ)在(I)的條件下,點(diǎn)F為線段PA上的一點(diǎn)且,若平面AEC和平面BDF所成的銳二面角的余弦值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某市高三數(shù)學(xué)復(fù)習(xí)備考情況,該市教研機(jī)構(gòu)組織了一次檢測(cè)考試,并隨機(jī)抽取了部分高三理科學(xué)生數(shù)學(xué)成績(jī)繪制如圖所示的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖,估計(jì)該市此次檢測(cè)理科數(shù)學(xué)的平均成績(jī);(精確到個(gè)位)

(2)研究發(fā)現(xiàn),本次檢測(cè)的理科數(shù)學(xué)成績(jī)近似服從正態(tài)分布,約為),按以往的統(tǒng)計(jì)數(shù)據(jù),理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的同學(xué)約占.

(。估計(jì)本次檢測(cè)成績(jī)達(dá)到自主招生分?jǐn)?shù)要求的理科數(shù)學(xué)成績(jī)大約是多少分?(精確到個(gè)位)

(ⅱ)從該市高三理科學(xué)生中隨機(jī)抽取人,記理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的人數(shù)為,求的分布列及數(shù)學(xué)期望.(說(shuō)明:表示的概率.參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

1)求上的單調(diào)區(qū)間;

2)當(dāng)時(shí),設(shè)函數(shù)時(shí),證明

3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,垂直平面,,,,的中點(diǎn).

(Ⅰ) 證明:平面平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】改革開(kāi)放以來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來(lái),移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校所有的1000名學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:

支付金額

支付方式

不大于2000

大于2000

僅使用A

27

3

僅使用B

24

1

(Ⅰ)估計(jì)該校學(xué)生中上個(gè)月AB兩種支付方式都使用的人數(shù);

(Ⅱ)從樣本僅使用B的學(xué)生中隨機(jī)抽取1人,求該學(xué)生上個(gè)月支付金額大于2000元的概率;

(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒(méi)有變化.現(xiàn)從樣本僅使用B的學(xué)生中隨機(jī)抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認(rèn)為樣本僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案