【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:
(2)若成等比數(shù)列,求a的值。
【答案】(1)l的普通方程;C的直角坐標(biāo)方程;(2).
【解析】
(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式即可把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,利用消去參數(shù)即可得到直線的直角坐標(biāo)方程;
(2)將直線的參數(shù)方程,代入曲線的方程,利用參數(shù)的幾何意義即可得出,從而建立關(guān)于的方程,求解即可.
(1)由直線l的參數(shù)方程消去參數(shù)t得,
,即為l的普通方程
由,兩邊乘以得
為C的直角坐標(biāo)方程.
(2)將代入拋物線得
由已知成等比數(shù)列,
即,,,
整理得
(舍去)或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計(jì)了該地區(qū)500名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過匯總整理得到如圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數(shù)的患者,稱為“短潛伏者”,潛伏期高于平均數(shù)的患者,稱為“長(zhǎng)潛伏者”.
(1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并計(jì)算出這500名患者中“長(zhǎng)潛伏者”的人數(shù);
(2)為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否高于平均數(shù)為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述500名患者中抽取300人,得到如下表格.
(i)請(qǐng)將表格補(bǔ)充完整;
短潛伏者 | 長(zhǎng)潛伏者 | 合計(jì) | |
60歲及以上 | 90 | ||
60歲以下 | 140 | ||
合計(jì) | 300 |
(ii)研究發(fā)現(xiàn),某藥物對(duì)新冠病毒有一定的抑制作用,現(xiàn)需在樣本中60歲以下的140名患者中按分層抽樣方法抽取7人做I期臨床試驗(yàn),再?gòu)倪x取的7人中隨機(jī)抽取兩人做Ⅱ期臨床試驗(yàn),求兩人中恰有1人為“長(zhǎng)潛伏者”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個(gè)命題中,正確的題號(hào)是__________.
①函數(shù)的最值一定是極值;
②設(shè):實(shí)數(shù),滿足;:實(shí)數(shù),滿足,則是的充分不必要條件;
③已知橢圓:與雙曲線:的焦點(diǎn)重合,、分別為、的離心率,則,且;
④一動(dòng)圓過定點(diǎn),且與已知圓:相切,則動(dòng)圓圓心的軌跡方程是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市民用水?dāng)M實(shí)行階梯水價(jià),每人用水量中不超過立方米的部分按4元/立方米收費(fèi),超出立方米的部分按10元/立方米收費(fèi),從該市隨機(jī)調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:
(1)如果為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價(jià)格為4元/立方米, 至少定為多少?
(2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,當(dāng)時(shí),估計(jì)該市居民該月的人均水費(fèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知高中學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)具有線性相關(guān)關(guān)系,在一次考試中某班7名學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)?nèi)缦卤恚?/span>
數(shù)學(xué)成績(jī) | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理成績(jī) | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
(1)求這7名學(xué)生的數(shù)學(xué)成績(jī)的極差和物理成績(jī)的平均數(shù);
(2)求物理成績(jī)對(duì)數(shù)學(xué)成績(jī)的線性回歸方程;若某位學(xué)生的數(shù)學(xué)成績(jī)?yōu)?/span>110分,試預(yù)測(cè)他的物理成績(jī)是多少?
下列公式與數(shù)據(jù)可供參考:
用最小二乘法求線性回歸方程的系數(shù)公式:,;
,,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘時(shí)期,人們認(rèn)為最美人體的頭頂至肚臍的長(zhǎng)度與肚臍至足底的長(zhǎng)度之比是(≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長(zhǎng)度與咽喉至肚臍的長(zhǎng)度之比也是.若某人滿足上述兩個(gè)黃金分割比例,且腿長(zhǎng)為105cm,頭頂至脖子下端的長(zhǎng)度為26 cm,則其身高可能是
A. 165 cmB. 175 cmC. 185 cmD. 190cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大提出,加快水污染防治,建設(shè)美麗中國(guó).根據(jù)環(huán)保部門對(duì)某河流的每年污水排放量(單位:噸)的歷史統(tǒng)計(jì)數(shù)據(jù),得到如下頻率分布表:
將污水排放量落入各組的頻率作為概率,并假設(shè)每年該河流的污水排放量相互獨(dú)立.
(1)求在未來3年里,至多1年污水排放量的概率;(2)該河流的污水排放對(duì)沿河的經(jīng)濟(jì)影響如下:當(dāng)時(shí),沒有影響;當(dāng)時(shí),經(jīng)濟(jì)損失為10萬元;當(dāng)時(shí),經(jīng)濟(jì)損失為60萬元.為減少損失,現(xiàn)有三種應(yīng)對(duì)方案:
方案一:防治350噸的污水排放,每年需要防治費(fèi)3.8萬元;
方案二:防治310噸的污水排放,每年需要防治費(fèi)2萬元;
方案三:不采取措施.
試比較上述三種文案,哪種方案好,并請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與曲線和分別交于兩點(diǎn),點(diǎn)的坐標(biāo)為,則面積的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程:
已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn),極軸與x軸非負(fù)半軸重合,直線l的參數(shù)方程為:(t為參數(shù),a∈[0,π),曲線C的極坐標(biāo)方程為:p=2cosθ.
(Ⅰ)寫出曲線C在直角坐標(biāo)系下的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l與曲線C相交PQ兩點(diǎn),若|PQ|,求直線l的斜率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com