分析 由約束條件作出可行域,設(shè)A(1,1),P(x,y)為可行域內(nèi)的一動點,向量$\overrightarrow{OA}$、$\overrightarrow{OP}$的夾角為θ,可得cosθ=$\frac{\sqrt{2}}{2}•$$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$,再由θ的范圍求得cosθ的范圍,則答案可求.
解答 解:由約束條件$\left\{\begin{array}{l}{x≤0}\\{y>x}\\{y<2x+1}\end{array}\right.$作出可行域如圖,
設(shè)A(1,1),P(x,y)為可行域內(nèi)的一動點,
向量$\overrightarrow{OA}$、$\overrightarrow{OP}$的夾角為θ,
∵|$\overrightarrow{OP}$|=$\sqrt{{x}^{2}{+y}^{2}}$,$\overrightarrow{OA}•\overrightarrow{OP}=x+y$,
∴cosθ=$\frac{\overrightarrow{OA}•\overrightarrow{OP}}{|\overrightarrow{OA}||\overrightarrow{OP}|}$=$\frac{x+y}{\sqrt{2}•\sqrt{{x}^{2}+{y}^{2}}}=\frac{\sqrt{2}}{2}•\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$.
∵當(dāng)P運動到B時,θ有最小值$\frac{π}{4}$,當(dāng)P運動到C時,θ有最大值π,
∴-1<cosθ≤$\frac{\sqrt{2}}{2}$,即-1<$\frac{\sqrt{2}}{2}•\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}≤\frac{\sqrt{2}}{2}$,
則$-\sqrt{2}$<$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$≤1.
∴$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$的取值范圍為(-$\sqrt{2}$,1].
故答案為:(-$\sqrt{2}$,1].
點評 本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法與數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(理)試卷(解析版) 題型:選擇題
不透明的袋子內(nèi)裝有相同的5個小球,分別標(biāo)有1-5五個編號,現(xiàn)有放回的隨機摸取三次,則摸出的三個小球的編號乘積能被10整除的概率為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | ||
C. | 非奇非偶函數(shù) | D. | 既是奇函數(shù)又是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{2}}{3}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5p | B. | 10p | C. | 11p | D. | 12p |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(0,\frac{2}{5}]$ | B. | $(0,\frac{2}{3}]$ | C. | (0,1] | D. | (0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | $\frac{11}{5}$ | C. | $\frac{9}{5}$ | D. | $\frac{7}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com