三個半徑均為3的球O
1、O
2、O
3與半徑為1的球l兩兩外切,則以O(shè)
1、O
2、O
3和l為四個頂點的三棱錐外接球的半徑為
.
考點:球的體積和表面積
專題:空間位置關(guān)系與距離
分析:根據(jù)題意得出三棱錐底面邊長為6,側(cè)棱長為4的正三棱錐L=O
1O
2O
3,利用正三角形O
1O
2O
3的中心,求出LM=
=2,根據(jù)R
2=(R-2)
2+(2
)
2求解即可.
解答:
解:∵三個半徑均為3的球O
1、O
2、O
3與半徑為1的球l兩兩外切,以O(shè)
1、O
2、O
3和l為四個頂點的三棱錐
∴三棱錐底面邊長為6,側(cè)棱長為4的正三棱錐L=O
1O
2O
3,
M為正三角形O
1O
2O
3的中心,
MO
3=2
,LM=
=2,
∴設(shè)三棱錐外接球的半徑為R,
∴R
2=(R-2)
2+(2
)
2,
解得:R=4,
故答案為:4.
點評:本題考查了空間幾何體的性質(zhì),構(gòu)造正三棱錐求解即可,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
下列四個結(jié)論中,
①命題“若x≠1,則x
2-3x+2≠0”的逆否命題是“若x
2-3x+2=0,則x=1”;
②若p∧q為假命題,則p,q均為假命題;
③若命題p:?x
0∈R,使得x
02+2x
0+3<0,則¬p:?x∈R,都有x
2+2x+3≥0;
④設(shè)
,
為兩個非零向量,則“
•
=|
|•|
|”是“a與b共線”的充分必要條件;
正確結(jié)論的序號是的是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知定義在(-1,1)上的函數(shù)f (x),其導(dǎo)函數(shù)為f′(x)=l+cosx,且f(0)=0,如果f(1-x)+f(l-x2)<0,則實數(shù)x的取值范圍為( )
A、(0,1) |
B、(1,) |
C、(-2,-) |
D、(1,)∪(-,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
寫出由下述各命題構(gòu)成的“p或q”,“p且q”,“非p”形式的命題,并指出所構(gòu)成的這些命題的真假.
(1)p:連續(xù)的三個整數(shù)的乘積能被2整除,q:連續(xù)的三個整數(shù)的乘積能被3整除;
(2)p:對角線互相垂直的四邊形是菱形,q:對角線互相平分的四邊形是菱形.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
某班有49位同學(xué)玩“數(shù)字接龍”游戲,具體規(guī)則按如圖所示的程序框圖執(zhí)行(其中a為座位號),并以輸出的值作為下一個輸入的值,若第一次 輸入的值為8,則第三次輸出的值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知某幾何體的三視圖如圖所示,其正視圖與側(cè)視圖都是邊長為2的等邊三角形,則該幾何體的體積等于
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(1)已知橢圓過點P(0,3)且a=3b,求橢圓的標(biāo)準(zhǔn)方程;
(2)焦點在x軸上的雙曲線過點
P(4,-3),且點Q(0,5)與兩焦點的連線相互垂直,求此雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
A、[-1,+∞) |
B、(-∞,-1] |
C、(-1,-∞) |
D、[0,+∞) |
查看答案和解析>>