已知某幾何體的三視圖如圖所示,其正視圖與側(cè)視圖都是邊長(zhǎng)為2的等邊三角形,則該幾何體的體積等于
 
考點(diǎn):由三視圖求面積、體積
專(zhuān)題:空間位置關(guān)系與距離
分析:該幾何體是圓錐,其軸截面為邊長(zhǎng)為2的等邊三角形.即可得出.
解答: 解:該幾何體是圓錐,其軸截面為邊長(zhǎng)為2的等邊三角形.
∴該幾何體的體積V=
1
3
×π×12×
3
=
3
π
3

故答案為:
3
π
3
點(diǎn)評(píng):本題考查了圓錐的三視圖及其體積計(jì)算公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(
1
2
|x-1|+a|x+2|.當(dāng)a=1時(shí),f(x)的單調(diào)遞減區(qū)間為
 
;當(dāng)a=-1時(shí),f(x)的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出四個(gè)區(qū)間:①(0,1);②(1,2);③(2,3);④(3,4),則函數(shù)f(x)=2x+x-4的零點(diǎn)所在的區(qū)間是這四個(gè)區(qū)間中的哪一個(gè):
 
 (只填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

先把函數(shù)f(x)=sin(x-
π
6
)
的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的
1
2
倍(縱坐標(biāo)不變),再把新得到的圖象向右平移
π
3
個(gè)單位,得到y(tǒng)=g(x)的圖象.當(dāng)x∈(
π
4
,
4
)
)時(shí),函數(shù)g(x)的值域?yàn)椋ā 。?/div>
A、(-
3
2
,1]
B、(-
1
2
,1]
C、(-
3
2
,
3
2
)
D、[-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三個(gè)半徑均為3的球O1、O2、O3與半徑為1的球l兩兩外切,則以O(shè)1、O2、O3和l為四個(gè)頂點(diǎn)的三棱錐外接球的半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD為正方形,側(cè)棱PA⊥底面ABCD,PA=AD=1,E、F分別為PD、AC上的動(dòng)點(diǎn),且
DE
DP
=
AF
AC
=λ,(0<λ<1).
(Ⅰ)若λ=
1
2
,求證:EF∥平面PAB;
(Ⅱ)求三棱錐E-FCD體積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(k)=
4k+1
(2k+3)2
(k>0)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的程序框圖中,若輸出S=
3
7
,則判斷框內(nèi)實(shí)數(shù)p的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,A={x|y=ln(1-x)},B={x||x-1|<1},則(∁UA)∩B=(  )
A、(-2,1)
B、(-2,1]
C、[1,2)
D、(1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案