【題目】

如圖,長方體ABCDA1B1C1D1的底面ABCD是正方形,點E在棱AA1上,BEEC1.

1)證明:BE⊥平面EB1C1;

2)若AE=A1E,求二面角BECC1的正弦值.

【答案】(1)證明見解析;(2)

【解析】

1)利用長方體的性質,可以知道側面,利用線面垂直的性質可以證明出,這樣可以利用線面垂直的判定定理,證明出平面

2)以點坐標原點,以分別為軸,建立空間直角坐標系,

設正方形的邊長為,,求出相應點的坐標,利用,可以求出之間的關系,分別求出平面、平面的法向量,利用空間向量的數(shù)量積公式求出二面角的余弦值的絕對值,最后利用同角的三角函數(shù)關系,求出二面角的正弦值.

證明(1)因為是長方體,所以側面,而平面,所以

,平面,因此平面

2)以點坐標原點,以分別為軸,建立如下圖所示的空間直角坐標系,

,

因為,所以,

所以,,

是平面的法向量,

所以

是平面的法向量,

所以

二面角的余弦值的絕對值為,

所以二面角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,PO垂直于圓O所在的平面,且.D為線段AC的中點.

(1)求證:平面平面

(2)若點E在線段PB上,且,求三棱錐體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,其中.點的焦點的右側,且的準線的距離是距離的3倍.經過點的直線與拋物線交于不同的兩點,直線與直線交于點,經過點且與直線垂直的直線軸于點.

(1)求拋物線的方程和的坐標;

(2)判斷直線與直線的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是空氣質量的一個重要指標,我國標準采用世衛(wèi)組織設定的最寬限值,即日均值在以下空氣質量為一級,在之間空氣質量為二級,在以上空氣質量為超標.如圖是某地日到日均值(單位:)的統(tǒng)計數(shù)據(jù),則下列敘述不正確的是(

A.日到日,日均值逐漸降低

B.天的日均值的中位數(shù)是

C.天中日均值的平均數(shù)是

D.從這天的日均監(jiān)測數(shù)據(jù)中隨機抽出一天的數(shù)據(jù),空氣質量為一級的概率是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導數(shù).證明:

1在區(qū)間存在唯一極大值點;

2有且僅有2個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】月,電影《毒液》在中國上映,為了了解江西觀眾的滿意度,某影院隨機調查了本市觀看影片的觀眾,現(xiàn)從調查人群中隨機抽取部分觀眾.并用如圖所示的表格記錄了他們的滿意度分數(shù)(分制),若分數(shù)不低于分,則稱該觀眾為“滿意觀眾”,請根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問題.

組別

分組

頻數(shù)

頻率

合計

1)寫出、的值;

2)畫出頻率分布直方圖,估算中位數(shù);

3)在選取的樣本中,從滿意觀眾中隨機抽取名觀眾領取獎品,求所抽取的名觀眾中至少有名觀眾來自第組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,平面,平面平面,是邊長為2的等邊三角形,,

1)證明:平面平面

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)),若不等式對任意實數(shù)恒成立,則實數(shù)的取值范圍是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線

(1)求曲線在點處的切線方程;

(2)求曲線過點的切線方程

查看答案和解析>>

同步練習冊答案