【題目】已知函數(shù),為的導(dǎo)數(shù).證明:
(1)在區(qū)間存在唯一極大值點;
(2)有且僅有2個零點.
【答案】(1)見解析;(2)見解析
【解析】
(1)求得導(dǎo)函數(shù)后,可判斷出導(dǎo)函數(shù)在上單調(diào)遞減,根據(jù)零點存在定理可判斷出,使得,進而得到導(dǎo)函數(shù)在上的單調(diào)性,從而可證得結(jié)論;(2)由(1)的結(jié)論可知為在上的唯一零點;當時,首先可判斷出在上無零點,再利用零點存在定理得到在上的單調(diào)性,可知,不存在零點;當時,利用零點存在定理和單調(diào)性可判斷出存在唯一一個零點;當,可證得;綜合上述情況可證得結(jié)論.
(1)由題意知:定義域為:且
令,
,
在上單調(diào)遞減,在上單調(diào)遞減
在上單調(diào)遞減
又,
,使得
當時,;時,
即在上單調(diào)遞增;在上單調(diào)遞減
則為唯一的極大值點
即:在區(qū)間上存在唯一的極大值點.
(2)由(1)知:,
①當時,由(1)可知在上單調(diào)遞增
在上單調(diào)遞減
又
為在上的唯一零點
②當時,在上單調(diào)遞增,在上單調(diào)遞減
又
在上單調(diào)遞增,此時,不存在零點
又
,使得
在上單調(diào)遞增,在上單調(diào)遞減
又,
在上恒成立,此時不存在零點
③當時,單調(diào)遞減,單調(diào)遞減
在上單調(diào)遞減
又,
即,又在上單調(diào)遞減
在上存在唯一零點
④當時,,
即在上不存在零點
綜上所述:有且僅有個零點
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)《人民網(wǎng)》報道,“美國國家航空航天局( NASA)發(fā)文稱,相比20年前世界變得更綠色了.衛(wèi)星資料顯示中國和印度的行動主導(dǎo)了地球變綠.”據(jù)統(tǒng)計,中國新增綠化面積的42%來自于植樹造林,下表是中國十個地區(qū)在2017年植樹造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)
單位:公頃
造林方式 | ||||||
地區(qū) | 造林總面積 | 人工造林 | 飛播造林 | 新封山育林 | 退化林修復(fù) | 人工更新 |
內(nèi)蒙 | 618484 | 311052 | 74094 | 136006 | 90382 | 6950 |
河北 | 583361 | 345625 | 33333 | 135107 | 65653 | 3643 |
河南 | 149002 | 97647 | 13429 | 22417 | 15376 | 133 |
重慶 | 226333 | 100600 | 62400 | 63333 | ||
陜西 | 297642 | 33602 | 63865 | 16067 | ||
甘肅 | 325580 | 260144 | 57438 | 7998 | ||
新疆 | 263903 | 118105 | 6264 | 126647 | 10796 | 2091 |
青海 | 178414 | 16051 | 159734 | 2629 | ||
寧夏 | 91531 | 58960 | 22938 | 8298 | 1335 | |
北京 | 19064 | 10012 | 4000 | 3999 | 1053 |
(I)請根據(jù)上述數(shù)據(jù)分別寫出在這十個地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);
(Ⅱ)在這十個地區(qū)中,任選一個地區(qū),求該地區(qū)人工造林面積占造林總面積的比值超過的概率是多少?
(Ⅲ)在這十個地區(qū)中,從新封山育林面積超過五萬公頃的地區(qū)中,任選兩個地區(qū),記X為這兩個地區(qū)中退化林修復(fù)面積超過六萬公頃的地區(qū)的個數(shù),求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,為橢圓上不與左右頂點重合的任意一點,,分別為的內(nèi)心、重心,當軸時,橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對某校高一年級學生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高一學生有360人,試估計該校高一學生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
如圖,長方體ABCD–A1B1C1D1的底面ABCD是正方形,點E在棱AA1上,BE⊥EC1.
(1)證明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在極坐標系中,O為極點,點在曲線上,直線l過點且與垂直,垂足為P.
(1)當時,求及l的極坐標方程;
(2)當M在C上運動且P在線段OM上時,求P點軌跡的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線,為直線上的動點,過作的兩條切線,切點分別為.
(1)證明:直線過定點:
(2)若以為圓心的圓與直線相切,且切點為線段的中點,求該圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com