分析 函數(shù)f(x)=$\left\{{\begin{array}{l}{\frac{4}{π}\sqrt{1-{x^2}},0≤x<1}\\{5{x^4}+1,1≤x≤2}\end{array}}$,可得a1=$\int_0^2{f(x)dx}$=${∫}_{0}^{1}\frac{4}{π}\sqrt{1-{x}^{2}}dx$+${∫}_{1}^{2}(5{x}^{4}+1)dx$=36,an+1-an=2n,利用an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1可得an,再利用基本不等式的性質(zhì)即可得出.
解答 解:∵函數(shù)f(x)=$\left\{{\begin{array}{l}{\frac{4}{π}\sqrt{1-{x^2}},0≤x<1}\\{5{x^4}+1,1≤x≤2}\end{array}}$,
∴a1=$\int_0^2{f(x)dx}$=${∫}_{0}^{1}\frac{4}{π}\sqrt{1-{x}^{2}}dx$+${∫}_{1}^{2}(5{x}^{4}+1)dx$=$\frac{4}{π}$×$\frac{π}{4}$+$({x}^{5}+x){|}_{1}^{2}$=36,
∵an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2(n-1)+2(n-2)+…+2×1+36
=$\frac{2×(n-1)n}{2}$+36=n2-n+36,
∴$\frac{a_n}{n}$=$\frac{{n}^{2}-n+36}{n}$=n+$\frac{36}{n}$-1≥$2\sqrt{n•\frac{36}{n}}$-1=11,當(dāng)且僅當(dāng)n=6時(shí)取等號(hào).
故答案為:11.
點(diǎn)評(píng) 本題考查了微積分基本定理、“累加求和”方法、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | $\frac{9}{2}$ | C. | $\frac{5}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在區(qū)間(0,$\frac{π}{6}$)上單調(diào)遞增 | |
B. | f(x)的一個(gè)對(duì)稱中心為(-$\frac{π}{12}$,0) | |
C. | 當(dāng)x∈[0,$\frac{π}{3}$]時(shí),fx)的值域?yàn)閇1,$\sqrt{3}$] | |
D. | 先將函數(shù)f(x)的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍,再向左平移$\frac{π}{8}$個(gè)單位后得到函數(shù)y=2cos(4x+$\frac{π}{6}$)的圖象 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2}{3}π$ | D. | $({2-\sqrt{2}})π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{π}{12}$,$\frac{13π}{12}}$] | B. | [${\frac{13π}{12}$,$\frac{25π}{12}}$] | C. | [${\frac{π}{12}$,$\frac{13π}{12}}$] | D. | [${\frac{7π}{12}$,$\frac{19π}{12}}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com