6.已知i是虛數(shù)單位,若復(fù)數(shù)$z=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,則z2+z+1的值為( 。
A.-1B.1C.0D.i

分析 先求出z2的值,然后代入z2+z+1計(jì)算.

解答 解:∵$z=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,
∴${z}^{2}=(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)^{2}=\frac{1}{4}-\frac{\sqrt{3}}{2}i-\frac{3}{4}$=$-\frac{1}{2}-\frac{\sqrt{3}}{2}i$,
則z2+z+1=$-\frac{1}{2}-\frac{\sqrt{3}}{2}i-\frac{1}{2}+\frac{\sqrt{3}}{2}i+1=0$.
故選:C.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知等比數(shù)列{an}的公比q>1,且a1+a3=20,a2=8
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{n}{{a}_{n}}$,Sn是數(shù)列{bn}的前n項(xiàng)和,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=ex+a•e-x+2(a∈R,e為自然對(duì)數(shù)的底數(shù)),若y=f(x)與y=f(f(x))的值域相同,則a的取值范圍是( 。
A.a<0B.a≤-1C.0<a≤4D.a<0或0<a≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在一次愛(ài)心捐款活動(dòng)中,小李為了了解捐款數(shù)額是否和居民自身的經(jīng)濟(jì)收入有關(guān),隨機(jī)調(diào)查了某地區(qū)的100個(gè)捐款居民每月平均的經(jīng)濟(jì)收入.在捐款超過(guò)100元的居民中,每月平均的經(jīng)濟(jì)收入沒(méi)有達(dá)到2000元的有60個(gè),達(dá)到2000元的有20個(gè);在捐款不超過(guò)100元的居民中,每月平均的經(jīng)濟(jì)收入沒(méi)有達(dá)到2000元的有10個(gè).
(Ⅰ)在下圖表格空白處填寫(xiě)正確數(shù)字,并說(shuō)明是否有95%以上的把握認(rèn)為捐款數(shù)額是否超過(guò)100元和居民每月平均的經(jīng)濟(jì)收入是否達(dá)到2000元有關(guān)?
(Ⅱ)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量居民中,采用隨機(jī)抽樣方法每次抽取1個(gè)居民,共抽取3次,記被抽取的3個(gè)居民中經(jīng)濟(jì)收入達(dá)到2000元的人數(shù)為X,求P(X=2)和期望EX的值.
每月平均經(jīng)濟(jì)收入達(dá)到2000元每月平均經(jīng)濟(jì)收入沒(méi)有達(dá)到2000元合計(jì)
捐款超過(guò)
100元
捐款不超
過(guò)100元
合計(jì)


數(shù)
據(jù)
 當(dāng)x2≤2.706時(shí),無(wú)充分證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為兩變量無(wú)關(guān)聯(lián);
 當(dāng)x2>2.706時(shí),有90%的把握判定變量A,B有關(guān)聯(lián);
 當(dāng)x2>3.841時(shí),有95%的把握判定變量A,B有關(guān)聯(lián);
 當(dāng)x2>6.635時(shí),有99%的把握判定變量A,B有關(guān)聯(lián).
附:X2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知i為虛數(shù)單位,m∈R,復(fù)數(shù)z=(-m2+2m+8)+(m2-8m)i,若z為負(fù)實(shí)數(shù),則m的取值集合為( 。
A.{0}B.{8}C.(-2,4)D.(-4,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.偶函數(shù)f(x)是定義域?yàn)镽上的可導(dǎo)函數(shù),當(dāng)x≥0時(shí),都有f'(x)<2x成立,則不等式f(x-1)+2x>f(x)+1的解集是( 。
A.$\left\{{\left.x\right|x<\frac{1}{2}}\right\}$B.$\left\{{\left.x\right|x>\frac{1}{2}}\right\}$C.{x|x≠$\frac{1}{2}$}D.實(shí)數(shù)集R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知數(shù)列{an}的前n項(xiàng)和${S_n}=-{a_n}-{(\frac{1}{2})^{n-1}}+2$(n∈N*),則數(shù)列{an}的通項(xiàng)公式an=$\frac{n}{{2}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)$f(x)=2cosx(cos+\sqrt{3}sinx)$(x∈R).
(1)求函數(shù)y=f(x)的周期和單調(diào)遞增區(qū)間;
(2)當(dāng)$x∈[0,\frac{π}{2}]$時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知f(x)是定義在R上的可導(dǎo)函數(shù),且滿足(x+2)f(x)+xf'(x)>0,則(  )
A.f(x)>0B.f(x)<0C.f(x)為減函數(shù)D.f(x)為增函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案