分析 設(shè)g(x)=e2xf(x),求導(dǎo),判斷出g(x)在R上為增函數(shù),利用單調(diào)性即可求出不等式的解集.
解答 解:設(shè)g(x)=e2xf(x),
∴g′(x)=2e2xf(x)+e2xf′(x)=e2x(f′(x)+2f(x))>0,
∴g(x)在R上為增函數(shù),
∵f(x)<0=f(-1)
∴g(x)<g(-1)
∴x<-1,即f(x)<0解集為(-∞,-1),
故答案為(-∞,-1).
點(diǎn)評 本題考查了導(dǎo)數(shù)的應(yīng)用,關(guān)鍵是構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{4}$ | C. | $\frac{9}{4}$ | D. | $\frac{{2\sqrt{3}+6}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
價格x | 9 | 9.5 | 10 | 10.5 | 11 |
售量y | 11 | 10 | 8 | 6 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{6}{5}$ | B. | $-\frac{4}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow a$•$\overrightarrow b$-${\overrightarrow b^2}$=0 | B. | ${\overrightarrow a^2}-\overrightarrow a$•$\overrightarrow b$=0 | C. | $\overrightarrow a$⊥$\overrightarrow b$ | D. | $|{\overrightarrow a}|=|{\overrightarrow b}|$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com