【題目】如圖,某機械廠要將長,寬的長方形鐵皮進行裁剪.已知點為的中點,點在邊上,裁剪時先將四邊形沿直線翻折到處(點分別落在直線下方點處,交邊于點),再沿直線裁剪.
(1)當(dāng)時,試判斷四邊形的形狀,并求其面積;
(2)若使裁剪得到的四邊形面積最大,請給出裁剪方案,并說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系.若曲線C的極坐標(biāo)方程為ρcos2θ﹣4sinθ=0,P點的極坐標(biāo)為 ,在平面直角坐標(biāo)系中,直線l經(jīng)過點P,斜率為
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的左右焦點與其短軸的一個端點是正三角形的三個頂點,點D 在橢圓C上,直線l:y=kx+m與橢圓C相交于A、P兩點,與x軸、y軸分別相交于點N和M,且PM=MN,點Q是點P關(guān)于x軸的對稱點,QM的延長線交橢圓于點B,過點A、B分別作x軸的垂涎,垂足分別為A1、B1
(1)求橢圓C的方程;
(2)是否存在直線l,使得點N平分線段A1B1?若存在,求求出直線l的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一緝私艇巡航至距領(lǐng)海邊界線l(一條南北方向的直線)3.8海里的A處,發(fā)現(xiàn)在其北偏東30°方向相距4海里的B處有一走私船正欲逃跑,緝私艇立即追擊,已知緝私艇的最大航速是走私船最大航速的3倍,假設(shè)緝私艇和走私船均按直線方向以最大航速航行.
(1)若走私船沿正東方向逃離,試確定緝私艇的追擊方向,使得用最短時間在領(lǐng)海內(nèi)攔截成功;(參考數(shù)據(jù):sin17°≈ , ≈5.7446)
(2)問:無論走私船沿何方向逃跑,緝私艇是否總能在領(lǐng)海內(nèi)成功攔截?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n≥2,n∈N* , 有序數(shù)組(a1 , a2 , …,an)經(jīng)m次變換后得到數(shù)組(bm , 1 , bm , 2 , …,bm , n),其中b1 , i=ai+ai+1 , bm , i=bm﹣1 , i+bm﹣1 , i+1(i=1,2,…,n),an+1=a1 , bm﹣1 , n+1=bm﹣1 , 1(m≥2).例如:有序數(shù)組(1,2,3)經(jīng)1次變換后得到數(shù)組(1+2,2+3,3+1),即(3,5,4);經(jīng)第2次變換后得到數(shù)組(8,9,7).
(1)若ai=i(i=1,2,…,n),求b3 , 5的值;
(2)求證:bm , i= ai+jCmj , 其中i=1,2,…,n. (注:i+j=kn+t時,k∈N* , i=1,2,…,n,則ai+j=a1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xex﹣a(lnx+x).
(1)若函數(shù)f(x)恒有兩個零點,求a的取值范圍;
(2)若對任意x>0,恒有不等式f(x)≥1成立. ①求實數(shù)a的值;
②證明:x2ex>(x+2)lnx+2sinx.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (m,n∈R)在x=1處取得極值2.
(1)求f(x)的解析式;
(2)k為何值時,方程f(x)-k=0只有1個根
(3)設(shè)函數(shù)g(x)=x2-2ax+a,若對于任意x1∈R,總存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x﹣1|﹣|x+2|.
(Ⅰ)解不等式f(x)>0;
(Ⅱ)若x0∈R,使得f(x0)+2m2<4m,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某算法的程序框圖,若程序運行后輸出的結(jié)果是14,則判斷框內(nèi)填入的條件可以是( )
A.S≥10?
B.S≥14?
C.n>4?
D.n>5?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com