【題目】在直角坐標系xOy中,以原點O為極點,x軸正半軸為極軸建立極坐標系.若曲線C的極坐標方程為ρcos2θ﹣4sinθ=0,P點的極坐標為 ,在平面直角坐標系中,直線l經(jīng)過點P,斜率為
(Ⅰ)寫出曲線C的直角坐標方程和直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點,求 的值.

【答案】解:(Ⅰ)曲線C的極坐標方程為ρcos2θ﹣4sinθ=0,即ρ2cos2θ﹣4ρsinθ=0,直角坐標方程為x2﹣4y=0;
直線l經(jīng)過點P(0,3),斜率為 ,直線l的參數(shù)方程為 (t為參數(shù));
(Ⅱ) (t為參數(shù))代入x2﹣4y=0,整理,得:t2﹣8 t﹣48=0,
設(shè)t1 , t2是方程的兩根,∴t1t2=﹣48,t1+t2=8
= = =
【解析】(Ⅰ)曲線C的極坐標方程為ρcos2θ﹣4sinθ=0,即ρ2cos2θ﹣4ρsinθ=0,即可寫出曲線C的直角坐標方程;直線l經(jīng)過點P(0,3),斜率為 ,即可寫出直線l的參數(shù)方程;(Ⅱ) (t為參數(shù))代入圓的普通方程,整理,得:t2+ t﹣3=0,利用參數(shù)的幾何意義,求 的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,內(nèi)角,,的對邊分別為,,.若的面積為,且,,則外接圓的面積為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2.5cos(ωx+φ)(ω>0,|φ|< )的部分圖象如圖所示,M、N兩點之間的距離為13,且f(3)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)個單位長度后所得函數(shù)的圖象關(guān)于坐標原點對稱,則t的最小值為(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某三棱錐的三視圖如圖所示,則該三棱錐的表面積是(
A.2+
B.4+
C.2+2
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知美國蘋果公司生產(chǎn)某款iphone手機的年固定成本為40萬美元,每生產(chǎn)1只還需另投入16美元.設(shè)蘋果公司一年內(nèi)共生產(chǎn)該款iphone手機x萬只并全部銷售完,每萬只的銷售收入為R(x)萬美元,且R(x)=
(1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(萬只)的函數(shù)解析式;
(2)當年產(chǎn)量為多少萬只時,蘋果公司在該款手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是( )

A. 命題x24x30,則x3”的逆否命題是:x≠3,則x24x3≠0”

B. “x>1”“|x|>0”的充分不必要條件

C. pq為假命題,則p、q均為假命題

D. 命題p“x0∈R使得x01<0”,則p“x∈R,均有x2x1≥0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是( 。

A. 2017年第一季度總量和增速由高到低排位均居同一位的省只有1個

B. 與去年同期相比,2017年第一季度五個省的總量均實現(xiàn)了增長

C. 去年同期河南省的總量不超過4000億元

D. 2017年第一季度增速由高到低排位第5的是浙江省

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域為D的函數(shù)y=f(x),如果存在區(qū)間[m,n]D,其中m<n,同時滿足:①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);②當定義域是[m,n]時,f(x)的值域也是[m,n]. 則稱函數(shù)f(x)是區(qū)間[m,n]上的“保值函數(shù)”,區(qū)間[m,n]稱為“保值區(qū)間”.
(1)求證:函數(shù)g(x)=x2﹣2x不是定義域[0,1]上的“保值函數(shù)”.
(2)若函數(shù)f(x)=2+ (a∈R,a≠0)是區(qū)間[m,n]上的“保值函數(shù)”,求a的取值范圍.
(3)對(2)中函數(shù)f(x),若不等式|a2f(x)|≤2x對x≥1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某機械廠要將長,寬的長方形鐵皮進行裁剪.已知點的中點,點在邊上,裁剪時先將四邊形沿直線翻折到處(點分別落在直線下方點處,交邊于點),再沿直線裁剪.

(1)當時,試判斷四邊形的形狀,并求其面積;

(2)若使裁剪得到的四邊形面積最大,請給出裁剪方案,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案