【題目】質(zhì)檢部門從某超市銷售的甲、乙兩種食用油中分別隨機抽取100桶檢測某項質(zhì)量指標,由檢測結(jié)果得到如圖的頻率分布直方圖:
(I)寫出頻率分布直方圖(甲)中的值;記甲、乙兩種食用油100桶樣本的質(zhì)量指標的方差分別為,試比較的大。ㄖ灰髮懗龃鸢福
(Ⅱ)佑計在甲、乙兩種食用油中各隨機抽取1桶,恰有一個桶的質(zhì)量指標大于20,且另—個桶的質(zhì)量指標不大于20的概率;
(Ⅲ)由頻率分布直方圖可以認為,乙種食用油的質(zhì)量指標值服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本方差,設(shè)表示從乙種食用油中隨機抽取10桶,其質(zhì)量指標值位于(14.55, 38.45)的桶數(shù),求的數(shù)學期望.
注:①同一組數(shù)據(jù)用該區(qū)間的中點值作代表,計算得:
②若,則,.
【答案】(1);(2)0.42;(3)6.826.
【解析】
(Ⅰ)由頻率分布直方圖的矩形面積和為1可得再由分布的離散程度即可比較方差大;
(Ⅱ)設(shè)事件A,事件B,事件C,求出P(A),P(B),P(C)即可;
(Ⅲ)求出從乙種食用油中隨機抽取10桶,其質(zhì)量指標值位于(14.55,38.45)的概率是0.6826,得到X~B(10,0.6826),求出EX即可.
(Ⅰ) ;
(Ⅱ)設(shè)事件:在甲公司產(chǎn)品中隨機抽取1顆,其質(zhì)量指標不大于20,
事件:在乙公司產(chǎn)品中隨機抽取1顆,其質(zhì)量指標不大于20,
事件:在甲、乙公司產(chǎn)品中隨機抽各取1顆,恰有一顆糖果的質(zhì)量指標大于20,且另一個不大于20,則,,
;
(Ⅲ)計算得: ,由條件得
從而 ,
從乙公司產(chǎn)品中隨機抽取10顆,其質(zhì)量指標值位于(14.55,38.45)的概率是0.6826,
依題意得,
.
科目:高中數(shù)學 來源: 題型:
【題目】過拋物線:的焦點的直線(傾斜角為銳角)交拋物線于,兩點,若為線段的中點,連接并延長交拋物線于點,已知,則直線的斜率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面幾種推理過程是演繹推理的是( 。
A. 某校高三有8個班,1班有51人,2班有53人,3班有52人,由此推測各班人數(shù)都超過50人
B. 由三角形的性質(zhì),推測空間四面體的性質(zhì)
C. 平行四邊形的對角線互相平分,菱形是平行四邊形,所以菱形的對角線互相平分
D. 在數(shù)列中,,可得,由此歸納出的通項公式
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1,當f(x)+f(x-8)≤2時,x的取值范圍是( )
A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)是函數(shù)定義域的一個子集,若存在,使得成立,則稱是的一個“準不動點”,也稱在區(qū)間上存在準不動點,已知,.
(1)若,求函數(shù)的準不動點;
(2)若函數(shù)在區(qū)間上存在準不動點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù);
(1)當時,若,求的取值范圍;
(2)若定義在上奇函數(shù)滿足,且當時, ,
求在上的反函數(shù);
(3)對于(2)中的,若關(guān)于的不等式在上恒成立,求實
數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推出正四面體的下列性質(zhì),你認為比較恰當?shù)氖牵ā 。?/span>
①各棱長相等,同一頂點上的任兩條棱的夾角都相等;
②各個面都是全等的正三角形,相鄰兩個面所成的二面角都相等;
③各面都是面積相等的三角形,同一頂點上的任兩條棱的夾角都相等.
A. ①B. ②C. ①②③D. ③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com