【題目】已知函數(shù),,.
(1)若,求函數(shù)的極小值;
(2)設函數(shù),求函數(shù)的單調(diào)區(qū)間;
(3)若在區(qū)間上存在一點,使得成立,求的取值范圍,()
【答案】(1)1;(2)詳見解析;(3):或.
【解析】試題分析:(1),第一步求函數(shù)的導數(shù),第二步求極值點,分析零點兩側的單調(diào)性,求得極小值;(2), ,函數(shù)的定義域是,所以討論和0的大小關系,分和兩種情況討論函數(shù)的單調(diào)性;(3)根據(jù)(2)將問題轉化為,使,討論極值點與定義域的關系,分三種情況討論函數(shù)的最小值,令 ,求實數(shù).
試題解析:(1)的定義域為,
當時,,,
(0,1) | 1 | ||
- | 0 | + | |
極小值 |
所以在處取得極小值1.
(2),
,
①當時,即時,在上,在上,
所以在上單調(diào)遞減,在上單調(diào)遞增;
②當,即時,在上,
所以,函數(shù)在上單調(diào)遞增.
綜上所述,①當時,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;
②當時,函數(shù)的單調(diào)遞增區(qū)間是,不存在減區(qū)間.
(3)在上存在一點,使得成立,即
在上存在一點,使得,即
函數(shù)在上的最小值小于零.
由(2)可知
①即,即時,在上單調(diào)遞減,
所以的最小值為,由可得.
所以;
②當,即時,在上單調(diào)遞增.
所以最小值為,由可得;
③當,即時,可得最小值為,
因為,所以,,
故,此時,不成立.
綜上討論可得所求的范圍是:或.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若對任意,都有,求的取值范圍;
(Ⅲ)證明函數(shù)的圖象在圖象的下方.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩位射擊運動員,在某天訓練中已各射擊10次,每次命中的環(huán)數(shù)如下:
甲 7 8 7 9 5 4 9 10 7 4
乙 9 5 7 8 7 6 8 6 7 7
(Ⅰ)通過計算估計,甲、乙二人的射擊成績誰更穩(wěn);
(Ⅱ)若規(guī)定命中8環(huán)及以上環(huán)數(shù)為優(yōu)秀,以頻率作為概率,請依據(jù)上述數(shù)據(jù)估計,求甲在第11至第13次射擊中獲得優(yōu)秀的次數(shù)的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某村電費收取有以下兩種方案供農(nóng)戶選擇:
方案一:每戶每月收取管理費2元,月用電量不超過30度時,每度0.5元;超過30度時,超過部分按每度0.6元收。
方案二:不收管理費,每度0.58元.
(1)求方案一收費(元)與用電量(度)間的函數(shù)關系;
(2)老王家九月份按方案一交費35元,問老王家該月用電多少度?
(3)老王家該月用電量在什么范圍內(nèi),選擇方案一比選擇方案二更好?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù),給出下列命題:
①若函數(shù)f(x)是R上周期為3的偶函數(shù),且滿足f(1)=1,則f(2)-f(-4)=0;
②若函數(shù)f(x)滿足f(x+1)f(x)=2 017,則f(x)是周期函數(shù);
③若函數(shù)g(x)=是偶函數(shù),則f(x)=x+1;
④函數(shù)y=的定義域為.
其中正確的命題是________.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確的個數(shù)是( )
①命題“x0∈R,x+1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量a與b的夾角是鈍角”的充要條件是“a·b<0”.
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】傾斜角為的直線過點P(8,2),直線和曲線C:(為參數(shù))交于不同的兩點M1、M2.
(1)將曲線C的參數(shù)方程化為普通方程,并寫出直線的參數(shù)方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)在的最小值;
(2)若函數(shù)與的圖象恰有一個公共點,求實數(shù)的值;
(3)若函數(shù)有兩個不同的極值點,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=,x∈[1,+∞).
(1)當a=時,判斷并證明f(x)的單調(diào)性;
(2)當a=-1時,求函數(shù)f(x)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com