【題目】關于函數(shù),給出下列命題:

若函數(shù)f(x)是R上周期為3的偶函數(shù),且滿足f(1)=1,則f(2)-f(-4)=0;

若函數(shù)f(x)滿足f(x+1)f(x)=2 017,則f(x)是周期函數(shù);

若函數(shù)g(x)=是偶函數(shù),則f(x)=x+1;

函數(shù)y=的定義域為.

其中正確的命題是________.(寫出所有正確命題的序號)

【答案】①②

【解析】因為f(x+3)=f(x)且f(-x)=f(x),所以f(2)=f(-1+3)=f(-1)=f(1)=1,f(-4)=f(-1)=f(1)=1,故f(2)-f(-4)=0,正確.

因為f(x+1)f(x)=2 017,所以f(x+1)=,f(x+2)==f(x).所以f(x)是周期為2的周期函數(shù),正確.

令x<0,則-x>0,g(-x)=-x-1.又g(x)為偶函數(shù),所以g(x)=g(-x)=-x-1.即f(x)=-x-1,不正確.

要使函數(shù)有意義,需滿足

即0<|2x-3|≤1,

所以1≤x≤2且x≠,即函數(shù)的定義域為,不正確.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

(1)求頻率分布圖中的值,并估計該企業(yè)的職工對該部門評分不低于80的概率;

(2)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解學生身高情況,某校以的比例對全校1000名學生按性別進行分層抽樣調(diào)查,已知男女比例為,測得男生身高情況的頻率分布直方圖(如圖所示):

(1)計算所抽取的男生人數(shù),并估計男生身高的中位數(shù)(保留兩位小數(shù));

(2)從樣本中身高在之間的男生中任選2人,求至少有1人身高在之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

)記的極小值為,求的最大值;

)若對任意實數(shù)恒有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了保護環(huán)境,發(fā)展低碳經(jīng)濟,某單位在國家科研部門的支持下,進行技術攻關,采用了新工藝,把二氧化碳轉化為一種可利用的化工產(chǎn)品,已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關系可近似的表示為:,且每處理一頓二氧化碳得到可利用的化工產(chǎn)品價值為100元.

1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?

2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家每月至少需要補貼多少元才能使該單位不虧損?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,.

(1)若,求函數(shù)的極小值;

(2)設函數(shù),求函數(shù)的單調(diào)區(qū)間;

(3)若在區(qū)間上存在一點,使得成立,求的取值范圍,(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

(Ⅰ)若在其定義域內(nèi)為單調(diào)遞增函數(shù),求實數(shù)的取值范圍;

(Ⅱ)設,且,若在[1,e]上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在坐標原點,焦點在軸上的橢圓,離心率為且過點,過定點的動直線與該橢圓相交于、兩點.

(1)若線段中點的橫坐標是,求直線的方程;

(2)在軸上是否存在點,使為常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集為R,集合A={x2,2x1,4},B={x5,1x,9}.

(1若x=3,求

(2,求AB.

查看答案和解析>>

同步練習冊答案