【題目】如圖,在正方體中,點是底面的中心,是線段的上一點。
(1)若為的中點,求直線與平面所成角的正弦值;
(2)能否存在點使得平面平面,若能,請指出點的位置關系,并加以證明;若不能,請說明理由。
【答案】(1) (2)見證明
【解析】
(1)建立空間坐標系得到直線的方向向量和面的法向量,再由向量的夾角公式得到結果;(2)建立坐標系得到兩個面的法向量,再由法向量互相垂直得到結果.
不妨設正方體的棱長為2,以,,分別為,,軸建立如圖所示的空間直角坐標系,則,,,.
(1)因為點是的中點,
所以點的坐標為.
所以,,.
設是平面的法向量,則,
即.
取,則,所以平面的一個法向量為.
所以 .
所以直線與平面所成角的正弦值為.
(2)假設存在點使得平面平面,設.
顯然,.
設是平面的法向量,則,即,
取,則,,所以平面的一個法向量為.
因為,所以點的坐標為.
所以,.
設是平面的法向量,則,即.
取,則,所以平面的一個法向量為.
因為平面平面,所以,即,,解得.
所以的值為2.即當時,平面平面.
科目:高中數學 來源: 題型:
【題目】已知的兩個頂點為,,平面內P,Q同時滿足;;.
求頂點A的軌跡E的方程;
過點作兩條互相垂直的直線,,直線,被點A的軌跡E截得的弦分別為,,設弦,的中點分別為M,試問:直線MN是否恒過一個頂點?若過定點,請求出該頂點,若不過定點,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】順次連接橢圓的四個頂點恰好構成了一個邊長為且面積為的菱形。
(1)求橢圓的方程;
(2),是橢圓上的兩個不同點,若直線,的斜率之積為(以為坐標原點),線段上有一點滿足,連接并延長交橢圓于點,求橢圓的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現擬建一個糧倉,如圖1所示,糧倉的軸截而如圖2所示,ED=EC,ADBC,BC⊥AB,EF⊥AB,CD交EF于點G,EF=FC=10m.
(1)設∠CFB=θ,求糧倉的體積關于θ的函數關系式;
(2)當sinθ為何值時,糧倉的體積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,O坐標原點,從直線yx+1上的一點作x軸的垂線,垂足記為Q1,過Q1作OP1的平行線,交直線yx+1于點,再從P2作x軸的垂線,垂足記為Q2,依次重復上述過程得到一系列點:P1,Q1,P2,Q2,…,Pn,Qn,記Pk點的坐標為,k=1,2,3,…,n,現已知x1=2.
(1)求Q2、Q3的坐標;
(2)試求xk(1≤k≤n)的通項公式;
(3)點Pn、Pn+1之間的距離記為|PnPn+1|(n∈N*),是否存在最小的正實數t,使得t對一切的自然數n恒成立?若存在,求t的值,若不存在,請說明理由
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com