【題目】數(shù)列滿足對任意的恒成立,為其前項(xiàng)的和,且

(1)求數(shù)列的通項(xiàng);

(2)數(shù)列滿足,其中

①證明:數(shù)列為等比數(shù)列;

②求集合

【答案】(1) (2) ①見證明;②

【解析】

(1)設(shè)等差數(shù)列{an}的公差為d.根據(jù)a4=4,前8項(xiàng)和S8=36.可得數(shù)列{an}的通項(xiàng)公式;

(2)①設(shè)數(shù)列{bn}前n項(xiàng)的和為Bn.根據(jù)bnBnBn﹣1,數(shù)列{bn}滿足.建立關(guān)系即可求解;

②由,得,即.記,由①得,

,得cm=3cp>cp,所以mp;設(shè)tpmm,p,t∈N*),由,得

討論整數(shù)成立情況即可;

(1)設(shè)等差數(shù)列的公差為,因?yàn)榈炔顢?shù)列滿足,前8項(xiàng)和

,解得

所以數(shù)列的通項(xiàng)公式為

(2)①設(shè)數(shù)列的前項(xiàng)和為,由(1)及

上兩式相減,得到

=

所以

,所以,滿足上式,

所以

當(dāng)時,

兩式相減,得 ,

所以 所以此數(shù)列為首項(xiàng)為1,公比為2的等比數(shù)列.

②由,得,即,∴

,顯然,此時變?yōu)?/span>,即

當(dāng)時,,不符合題意;

當(dāng)時,,符合題意,此時

當(dāng)時,,不符合題意;

當(dāng)時,,不符合題意;

當(dāng)時,,不符合題意;

下證當(dāng)時,方程

,顯然,從而

當(dāng),時,方程沒有正整數(shù)解.

綜上所述:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中兩個定點(diǎn),如果對于常數(shù),在函數(shù),的圖像上有且只有6個不同的點(diǎn),使得成立,那么的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)要完成下列3項(xiàng)抽樣調(diào)查:①從20罐奶粉中抽取4罐進(jìn)行食品安全衛(wèi)生檢查;②從某社區(qū)100戶高收入家庭,270戶中等收入家庭,80戶低收入家庭中選出45戶進(jìn)行消費(fèi)水平調(diào)查;③某中學(xué)報告廳有28排,每排有35個座位,一次報告會恰好坐滿了聽眾,報告會結(jié)束后,為了聽取意見,需要請28名聽眾進(jìn)行座談.較為合理的抽樣方法是(

A.①系統(tǒng)抽樣;②簡單隨機(jī)抽樣;③分層抽樣

B.①簡單隨機(jī)抽樣;②分層抽樣;③系統(tǒng)抽樣

C.①分層抽樣;②系統(tǒng)抽樣;③簡單隨機(jī)抽樣

D.①簡單隨機(jī)抽樣;②系統(tǒng)抽樣;③分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,點(diǎn)是底面的中心,是線段的上一點(diǎn)。

(1)若的中點(diǎn),求直線與平面所成角的正弦值;

(2)能否存在點(diǎn)使得平面平面,若能,請指出點(diǎn)的位置關(guān)系,并加以證明;若不能,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)在圓柱的底面圓上,為圓的直徑.

(1)若圓柱的體積,,,求異面直線所成的角(用反三角函數(shù)值表示結(jié)果);

(2)若圓柱的軸截面是邊長為2的正方形,四面體的外接球?yàn)榍?/span>,求兩點(diǎn)在球上的球面距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線方程,為焦點(diǎn),為拋物線準(zhǔn)線上一點(diǎn),為線段與拋物線的交點(diǎn),定義:.

(1)當(dāng)時,求;

(2)證明:存在常數(shù),使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)是定義在R上的單調(diào)函數(shù),若函數(shù)恰有個零點(diǎn),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),直線,圓.

1)求的取值范圍,并求出圓心坐標(biāo);

2)有一動圓的半徑為,圓心在上,若動圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種汽車購買時費(fèi)用為144萬元,每年應(yīng)交付保險費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共0.9萬元,汽車的維修費(fèi)為:第一年0.2萬元,第二年0.4萬元,第三年0.6萬元,……,依等差數(shù)列逐年遞增.

)設(shè)使用n年該車的總費(fèi)用(包括購車費(fèi)用)為f(n),試寫出f(n)的表達(dá)式;

)求這種汽車使用多少年報廢最合算(即該車使用多少年平均費(fèi)用最少).

查看答案和解析>>

同步練習(xí)冊答案