【題目】已知拋物線方程,為焦點,為拋物線準線上一點,為線段與拋物線的交點,定義:.
(1)當時,求;
(2)證明:存在常數(shù),使得.
【答案】(1);(2)證明見解析.
【解析】
(1)求得拋物線的焦點和準線方程,求得PF的斜率和方程,解得Q的坐標,由兩點的距離公式可得所求值;
(2)求得P(﹣1,0),可得a=2,設P(﹣1,yP),yP>0,PF:x=my+1,代入拋物線方程,求得Q的縱坐標,計算2d(P)﹣|PF|,化簡整理即可得證.
(1)拋物線方程y2=4x的焦點F(1,0),準線方程 ,當,
kPF==,PF的方程為y=(x﹣1),代入拋物線的方程,解得xQ=,
拋物線的準線方程為x=﹣1,可得|PF|==,
|QF|=+1=,d(P)==;
(2)當時,易得,不妨設,
直線,則,
聯(lián)立,得, ,
,
所以存在常數(shù),使得.
科目:高中數(shù)學 來源: 題型:
【題目】順次連接橢圓的四個頂點恰好構成了一個邊長為且面積為的菱形。
(1)求橢圓的方程;
(2),是橢圓上的兩個不同點,若直線,的斜率之積為(以為坐標原點),線段上有一點滿足,連接并延長交橢圓于點,求橢圓的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對任意,函數(shù)滿足:,,數(shù)列的前15項和為,數(shù)列滿足,若數(shù)列的前項和的極限存在,則________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列滿足對任意的恒成立,為其前項的和,且.
(1)求數(shù)列的通項;
(2)數(shù)列滿足,其中.
①證明:數(shù)列為等比數(shù)列;
②求集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高三年級有500名學生,為了了解數(shù)學科的學習情況,現(xiàn)從中隨機抽出若干名學生在一次測試中的數(shù)學成績,制成如下頻率分布表:
分組 | 頻數(shù) | 頻率 |
12 | ||
4 | ||
合計 |
根據(jù)上面圖表,求處的數(shù)值
在所給的坐標系中畫出的頻率分布直方圖;
根據(jù)題中信息估計總體平均數(shù),并估計總體落在中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線過點且與直線垂直,直線與軸交于點,點與點關于軸對稱,動點滿足.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點的直線與軌跡相交于兩點,設點,直線的斜率分別為,問是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用0與1兩個數(shù)字隨機填入如圖所示的5個格子里,每個格子填一個數(shù)字,并且從左到右數(shù),不管數(shù)到哪個格子,總是1的個數(shù)不少于0的個數(shù),則這樣填法的概率為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com