19.已知動點(diǎn)M到定點(diǎn)F(1,0)的距離與點(diǎn)M到定直線m:x=2的距離之比為$\frac{\sqrt{2}}{2}$
(1)求動點(diǎn)M的軌跡C的方程;
(2)設(shè)過定點(diǎn)A(0,2)的動直線l(斜率存在)與C相交于P,Q兩點(diǎn),以線段PQ為直徑的圓,若定點(diǎn)F在此圓內(nèi),求出滿足條件的直線l的斜率范圍.

分析 (1)設(shè)M(x,y),由題意可得:$\frac{\sqrt{(x-1)^{2}+{y}^{2}}}{|x-2|}$=$\frac{\sqrt{2}}{2}$,化簡即可得出.
(2)設(shè)L:y=kx+2,P(x1,y1),Q(x2,y2),直線方程與橢圓方程聯(lián)立化為:(2k2+1)x2+8kx+6=0,△>0,由題意可得:$\overrightarrow{FP}•\overrightarrow{FQ}$<0,化為:(1+k2)x1•x2+(2k-1)(x1+x2)+5<0,解出即可得出.

解答 解:(1)設(shè)M(x,y),由題意可得:$\frac{\sqrt{(x-1)^{2}+{y}^{2}}}{|x-2|}$=$\frac{\sqrt{2}}{2}$,化為:$\frac{{x}^{2}}{2}$+y2=1.
(2)設(shè)L:y=kx+2,P(x1,y1),Q(x2,y2),聯(lián)立$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,化為:(2k2+1)x2+8kx+6=0,
當(dāng)△>0時(shí),化為${k}^{2}>\frac{3}{2}$,解得$k>\frac{\sqrt{6}}{2}$或k$<-\frac{\sqrt{6}}{2}$.①
∴x1+x2=$\frac{-8k}{2{k}^{2}+1}$,x1•x2=$\frac{6}{2{k}^{2}+1}$,(*)
由題意可得:$\overrightarrow{FP}•\overrightarrow{FQ}$<0,
∴(x1-1)(x2-1)+y1y2<0,
化為:(1+k2)x1•x2+(2k-1)(x1+x2)+5<0,把(*)代入上式,解得$k<-\frac{11}{8}$,②
由①②可得:$k<-\frac{11}{8}$.

點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題、點(diǎn)與圓的位置關(guān)系、向量數(shù)量積運(yùn)算性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系、不等式的解法,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y+1≥0}\\{2x+y-1≤0}\end{array}\right.$,若直線y=k(x+1)把不等式組表示的平面區(qū)域分成上、下兩部分的面積比為1:2,則k=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知冪函數(shù)f(x)=xa的圖象過點(diǎn)(2,$\frac{1}{2}$),則函數(shù)g(x)=(x-1)f(x)在區(qū)間[$\frac{1}{2}$,2]上的最小值是( 。
A.0B.-1C.-2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知α∈(-$\frac{π}{2}$,0),cosα=$\frac{{\sqrt{5}}}{5}$.
(1)求sin2α的值;
(2)求$\frac{sinα+cosα}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在平行六面體ABCD-A1B1C1D1中,AB=1,AD=1,AA1=2,∠BAD=90°,∠BAA1=∠DAA1=60°,則AC1的長為( 。
A.$\sqrt{13}$B.$\sqrt{5}$C.$\sqrt{10}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知橢圓C的左右焦點(diǎn)坐標(biāo)分別是(-2,0),(2,0),離心率為$\frac{\sqrt{2}}{2}$,若P為橢圓C上的任意一點(diǎn),過點(diǎn)P垂直于y軸的直線交y軸于點(diǎn)Q,M為線段QP的中點(diǎn),則點(diǎn)M的軌跡方程為$\frac{{x}^{2}}{2}+\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)D表示不等式組$\left\{\begin{array}{l}{x≤1}&{\;}\\{y≤x}&{\;}\\{x+y≥1}&{\;}\end{array}\right.$所確定的平面區(qū)域,在D內(nèi)存在無數(shù)個點(diǎn)落在y=a(x+2)上,則a的取值范圍是( 。
A.RB.($\frac{1}{3}$,1)C.(0,$\frac{1}{3}$)D.(-∞,0]∪[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知sinα-sinβ=1-$\frac{\sqrt{3}}{2}$,cosα-cosβ=$\frac{1}{2}$,則cos(α-β)=( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({b>a>0})$的左焦點(diǎn)關(guān)于C的一條漸近線的對稱點(diǎn)在另一條漸近線上,則C的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案