【題目】已知函數(shù)f(x)=lnx,g(x)= x2﹣bx(b為常數(shù)).
(1)函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線與函數(shù)g(x)的圖象相切,求實(shí)數(shù)b的值;
(2)若函數(shù)h(x)=f(x)+g(x)在定義域上存在單調(diào)減區(qū)間,求實(shí)數(shù)b的取值范圍;
(3)若b≥2,x1 , x2∈[1,2],且x1≠x2 , 都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,求實(shí)數(shù)b的取值范圍.

【答案】
(1)解:因?yàn)閒(x)=lnx,所以 ,因此f'(1)=1,

所以函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程為y=x﹣1,

得x2﹣2(b+1)x+2=0.

由△=4(b+1)2﹣8=0,得

(還可以通過導(dǎo)數(shù)來求b)


(2)解:因?yàn)閔(x)=f(x)+g(x)= (x>0),

所以 ,

由題意知h'(x)<0在(0,+∞)上有解,

因?yàn)閤>0,設(shè)u(x)=x2﹣bx+1,因?yàn)閡(0)=1>0,

則只要 ,解得b>2,

所以b的取值范圍是(2,+∞)


(3)解:不妨設(shè)x1>x2,

因?yàn)楹瘮?shù)f(x)=lnx在區(qū)間[1,2]上是增函數(shù),

所以f(x1)>f(x2),

函數(shù)g(x)圖象的對稱軸為x=b,且b>2.

當(dāng)b≥2時,函數(shù)g(x)在區(qū)間[1,2]上是減函數(shù),

所以g(x1)<g(x2),

所以|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|,

等價于f(x1)﹣f(x2)>g(x2)﹣g(x1),

即f(x1)+g(x1)>f(x2)+g(x2),

等價于h(x)=f(x)+g(x)= 在區(qū)間[1,2]上是增函數(shù),

等價于 在區(qū)間[1,2]上恒成立,

等價于 在區(qū)間[1,2]上恒成立,所以b≤2,又b≥2,所以b=2


【解析】(1)求出函數(shù)的導(dǎo)數(shù)根據(jù)二次函數(shù)的性質(zhì)求出b的值即可;(2)求出h(x)的導(dǎo)數(shù),結(jié)合二次函數(shù)的性質(zhì)得到關(guān)于b的不等式組,解出即可;(3)問題等價于f(x1)﹣f(x2)>g(x2)﹣g(x1),即h(x)=f(x)+g(x)= 在區(qū)間[1,2]上是增函數(shù),根據(jù)函數(shù)的單調(diào)性求出b的范圍即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知整數(shù)n≥4,集合M={1,2,3,…,n}的所有含有4個元素的子集記為A1 , A2 , A3 , …,
設(shè)A1 , A2 , A3 , …, 中所有元素之和為Sn
(1)求S4 , S5 , S6并求出Sn;
(2)證明:S4+S5+…+Sn=10Cn+26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是以O為中心的菱形,底面ABCD,,,MBC上一點(diǎn).

當(dāng)BM等于多少時,平面POM?

在滿足的條件下,若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】去年“十一”期間,昆曲高速公路車輛較多.某調(diào)查公司在曲靖收費(fèi)站從7座以下小型汽車中按進(jìn)收費(fèi)站的先后順序,每間隔50輛就抽取一輛的抽樣方法抽取40輛汽車進(jìn)行抽樣調(diào)查,將他們在某段高速公路的車速()分成六段:,,,,,后,得到如圖的頻率分布直方圖.

(I)調(diào)查公司在抽樣時用到的是哪種抽樣方法?

(II)求這40輛小型汽車車速的眾數(shù)和中位數(shù)的估計(jì)值;

(III)若從這40輛車速在的小型汽車中任意抽取2輛,求抽出的2輛車車速都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對任意的x,y∈(0,+∞),不等式ex+y﹣4+ex﹣y+4+6≥4xlna恒成立,則正實(shí)數(shù)a的最大值是(
A.
B.
C.e
D.2e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面,,,,,的中點(diǎn).

(1)求證:;

(2)求證:;

(3)求二面角E-AB-C的正切值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T,其范圍為[0,10],分為五個級別,T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢绺叻鍟r段(T≥3),從某市交通指揮中心隨機(jī)選取了三環(huán)以內(nèi)的50個交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如右圖. (Ⅰ)這50個路段為中度擁堵的有多少個?
(Ⅱ)據(jù)此估計(jì),早高峰三環(huán)以內(nèi)的三個路段至少有一個是嚴(yán)重?fù)矶碌母怕适嵌嗌伲?/span>
(III)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為36分鐘;中度擁堵為42分鐘;嚴(yán)重?fù)矶聻?0分鐘,求此人所用時間的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組欲研究晝夜溫差大小與患感冒人數(shù)之間的關(guān)系,統(tǒng)計(jì)得到1至6月份每月9號的晝夜溫差與因患感冒而就診的人數(shù)的數(shù)據(jù),如下表:

日期

19

2月9

3月9

4月9

59

6月9

10

11

13

12

8

6

22

25

29

26

16

12

該研究小組的研究方案是:先從這6組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求回歸方程,再用之前被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)若選取1月和6月的數(shù)據(jù)作為檢驗(yàn)數(shù)據(jù),請根據(jù)剩下的2至5月的數(shù)據(jù),求出關(guān)于的線性回歸方程;(計(jì)算結(jié)果保留最簡分?jǐn)?shù))

(2)若用(1)中所求的回歸方程作預(yù)報,得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過2人,則認(rèn)為得到的回歸方程是理想的,試問該研究小組所得回歸方程是否理想?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的圖象的一條對稱軸方程是 ,函數(shù)f'(x)的圖象的一個對稱中心是 ,則f(x)的最小正周期是(
A.
B.
C.π
D.2π

查看答案和解析>>

同步練習(xí)冊答案