如圖為一個(gè)纜車示意圖,該纜車半徑為4.8m,圓上最低點(diǎn)與地面距離為0.8m,60秒轉(zhuǎn)動(dòng)一圈,圖中OA與地面垂直,以O(shè)A為始邊,逆時(shí)針轉(zhuǎn)到θ角到OB,設(shè)B點(diǎn)與地面距離是h.
(1)求h與θ間的函數(shù)關(guān)系式;
(2)設(shè)從OA開始轉(zhuǎn)動(dòng),經(jīng)過t秒后到達(dá)OB,求h與t之間的函數(shù)關(guān)系式,并求纜車到達(dá)最高點(diǎn)時(shí)用的時(shí)間.
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)以圓心O為原點(diǎn),以水平方向?yàn)閤軸方向,以豎直方向?yàn)閅軸方向建立平面直角坐標(biāo)系,則根據(jù)纜車半徑為4.8m,圓上最低點(diǎn)與地面距離為0.8m,60秒轉(zhuǎn)動(dòng)一圈,易得到到h與θ間的函數(shù)關(guān)系式;
(2)由60秒轉(zhuǎn)動(dòng)一圈,易得點(diǎn)A在圓上轉(zhuǎn)動(dòng)的角速度是
π
30
,故t秒轉(zhuǎn)過的弧度數(shù)為
π
30
t,根據(jù)(1)的結(jié)論,我們將
π
30
t代入解析式,即可得到滿足條件的t值.
解答: 解:(1)以圓心O為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,
則以O(shè)x為始邊,OB為終邊的角為θ-
π
2
,
故點(diǎn)B的坐標(biāo)為:(4.8cos(θ-
π
2
),4.8sin(θ-
π
2
)),
∴h=5.6+4.8sin(θ-
π
2
).
(2)點(diǎn)A在圓上轉(zhuǎn)動(dòng)的角速度是
π
30
,故t秒轉(zhuǎn)過的弧度數(shù)為
π
30
t,
∴h=5.6+4.8sin(
π
30
t-
π
2
),t∈[0,+∞).
到達(dá)最高點(diǎn)時(shí),h=10.4m,
由sin(
π
30
t-
π
2
)=1可得
π
30
t-
π
2
=
π
2
,解得t=30
∴纜車到達(dá)最高點(diǎn)時(shí),用的時(shí)間最少為30秒.
點(diǎn)評(píng):本題考查建立三角函數(shù)模型,將現(xiàn)實(shí)問題轉(zhuǎn)化為數(shù)學(xué)問題,是解答的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)(用綜合法證明)已知△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,且A、B、C成等差數(shù)列,a,b,c成等比數(shù)列,證明:△ABC為等邊三角形.
(2)(用分析法證明)已知a>b>c,求證:
1
a-b
+
1
b-c
4
a-c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F(1,0),直線l:x=-1,動(dòng)點(diǎn)P到點(diǎn)F的距離等于它到直線l的距離.
(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)是否存在過N(4,2)的直線m,使得直線m被曲線C截得的弦AB恰好被點(diǎn)N所平分?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若y=a-bsinx(b>0)的最大值為
3
2
,最小值為-
1
2
,求函數(shù)y=asinx+b(x∈[-
π
6
,
3
4
π])的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O點(diǎn)為坐標(biāo)原點(diǎn),向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m).
(1)若A,B,C三點(diǎn)共線,求實(shí)數(shù)m的值;
(2)若△ABC為直角三角形,且A為直角,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣M=
10
21

(Ⅰ)請(qǐng)寫出矩陣M對(duì)應(yīng)的變換f的變換公式;
(Ⅱ)從變換的角度說明矩陣M可逆嗎?如果可逆,請(qǐng)用求逆變換的方式求出對(duì)應(yīng)的逆矩陣M-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=sinωxcosωx-
3
sin2ωx+
3
2
(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與軸的交點(diǎn),且△ABC為直角三角形.
(Ⅰ)求ω的值及f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若f(x)的圖象與f(x)的圖象與關(guān)于點(diǎn)(-
1
3
,0)對(duì)稱,且對(duì)一切x∈R,恒有m2+[g(x)]2>4[m+g(-x)]成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)某地區(qū)對(duì)12歲兒童瞬時(shí)記憶能力進(jìn)行調(diào)查.瞬時(shí)記憶能力包括聽覺記憶能力與視覺記憶能力.某班學(xué)生共有40人,下表為該學(xué)生瞬時(shí)記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學(xué)生為3人.
視覺
聽覺
視覺記憶能力
偏低中等偏高超常
聽覺
記憶
能力
偏低0751
中等183b
偏高2a01
超常0211
由于部分?jǐn)?shù)據(jù)技失,只知道從這40位學(xué)生中隨機(jī)抽取一個(gè),視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為
2
5

(1)試確定a、b的值;
(2)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生的概率;
(3)從視覺記憶能力偏高的學(xué)生中任意抽取3人,設(shè)具有聽覺記憶能力中等的學(xué)生人數(shù)為ξ,求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果兩條直線2x+3y-m=0和x-my+12=0的交點(diǎn)在x軸上,那么m的值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案