【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為, 為參數(shù)),曲線的極坐標(biāo)方程為.

(1)將曲線的極坐標(biāo)方程化為直坐標(biāo)方程,并說明曲線的形狀;

(2)若直線經(jīng)過點(diǎn),求直線被曲線截得的線段的長(zhǎng).

【答案】(1)詳見解析;(2)8.

【解析】試題分析:(1)將曲線的極坐標(biāo)方程為兩邊同時(shí)乘以,利用極坐標(biāo)與直角坐標(biāo)之間的關(guān)系即可得出其直角坐標(biāo)方程;2由直線經(jīng)過點(diǎn),可得的值,再將直線的參數(shù)方程代入曲線的標(biāo)準(zhǔn)方程,由直線參數(shù)方程的幾何意義可得直線被曲線截得的線段的長(zhǎng).

試題解析:(1)由可得,即,

曲線表示的是焦點(diǎn)為,準(zhǔn)線為的拋物線.

(2)將代入,得, ,

, ,∴直線的參數(shù)方程為 (為參數(shù)).

將直線的參數(shù)方程代入,

由直線參數(shù)方程的幾何意義可知,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后隨機(jī)投擲2枚正方體骰子,其中x表示第1枚骰子出現(xiàn)的點(diǎn)數(shù),y表示第2枚骰子出現(xiàn)的點(diǎn)數(shù),
(1)求點(diǎn)P(x,y)在直線y=x﹣1上的概率;
(2)求點(diǎn)P(x,y)滿足y2<4x的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}中,已知an>0,a1+a2+a3=15,且a1+2,a2+5,a3+13構(gòu)成等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家為了了解某新產(chǎn)品使用者的年齡情況,現(xiàn)隨機(jī)調(diào)査100 位使用者的年齡整理后畫出的頻率分布直方圖如圖所示.

(1)求100名使用者中各年齡組的人數(shù),并利用所給的頻率分布直方圖估計(jì)所有使用者的平均年齡;

(2)若已從年齡在的使用者中利用分層抽樣選取了6人,再從這6人中選出2人,求這2人在不同的年齡組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓E: 的左焦點(diǎn)為F1 , 右焦點(diǎn)為F2 , 離心率e= .過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長(zhǎng)為8.
(Ⅰ)求橢圓E的方程.
(Ⅱ)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二面角α﹣AB﹣β是直二面角,P為棱AB上一點(diǎn),PQ、PR分別在平面α、β內(nèi),且∠QPB=∠RPB=45°,則∠QPR為(
A.45°
B.60°
C.120°
D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A1、A2為橢圓 的左右頂點(diǎn),若在橢圓上存在異于A1、A2的點(diǎn)P,使得 ,其中O為坐標(biāo)原點(diǎn),則橢圓的離心率e的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐S一ABCD中,已知AD∥BC,∠ADC=90°,∠BAD=135°,AD=DC= ,SA=SC=SD=2.
(I)求證:AC⊥SD;
(Ⅱ)求二面角A﹣SB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某小區(qū)隨機(jī)抽取40個(gè)家庭,收集了這40個(gè)家庭去年的月均用水量(單位:噸)的數(shù)據(jù),整理得到頻數(shù)分布表和頻率分布直方圖.

分組

頻數(shù)

[2,4)

2

[4,6)

10

[6,8)

16

[8,10)

8

[10,12]

4

合計(jì)

40


(1)求頻率分布直方圖中a,b的值;
(2)從該小區(qū)隨機(jī)選取一個(gè)家庭,試估計(jì)這個(gè)家庭去年的月均用水量不低于6噸的概率;
(3)在這40個(gè)家庭中,用分層抽樣的方法從月均用水量不低于6噸的家庭里抽取一個(gè)容量為7的樣本,將該樣本看成一個(gè)總體,從中任意選取2個(gè)家庭,求其中恰有一個(gè)家庭的月均用水量不低于8噸的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案