【題目】某廠家為了了解某新產(chǎn)品使用者的年齡情況,現(xiàn)隨機調(diào)査100 位使用者的年齡整理后畫出的頻率分布直方圖如圖所示.

(1)求100名使用者中各年齡組的人數(shù),并利用所給的頻率分布直方圖估計所有使用者的平均年齡;

(2)若已從年齡在的使用者中利用分層抽樣選取了6人,再從這6人中選出2人,求這2人在不同的年齡組的概率.

【答案】(1)各組年齡的人數(shù)分別為:10,30,40,20,平均年齡為:37歲;(2).

【解析】試題分析:1)由直方圖可得各組年齡的人數(shù),由直方圖計算平均值的方法可得平均年齡;
2)在[35,45)的人數(shù)為4人,記為a,b,c,d;在[45,55)的人數(shù)為2人,記為m,n.列舉可得總的情況共有15種,這兩人在不同年齡組包含8種,由古典概型概率公式可得.

試題解析:

(1)由圖可得,各組年齡的人數(shù)分別為:10,30,40,20.

估計所有使用者的平均年齡為: (歲)

(2)由題意可知抽取的6人中,年齡在范圍內(nèi)的人數(shù)為4,記為;年齡在范圍內(nèi)的人數(shù)為2,記為.從這6人中選取2人,結(jié)果共有15種:

.

設“這2人在不同年齡組“為事件.

則事件所包含的基本事件有8種,故,所以這2人在不同年齡組的概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知某食品廠需要定期購買食品配料,該廠每天需要食品配料200千克,配料的價格為1.8元/千克,每次購買配料需支付運費236元,每次購買來的配料還需支付保管費用,其標準如下:7天以內(nèi)(含7天),無論重量多少,均按10元/天支付;超出7天以外的天數(shù),根據(jù)實際剩余配料的重量,以每天0.03元/千克支付.

(1)當9天購買一次配料時,求該廠用于配料的保管費用是多少元?

2)設該廠天購買一次配料,求該廠在這天中用于配料的總費用(元)關于的函數(shù)關系式,并求該廠多少天購買一次配料才能使平均每天支付的費用最少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù)),若的解集是

(1)求的值;

2若關于的不等式有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(Rt△FHE,H是直角頂點)來處理污水,管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米, 米,記∠BHE=θ.

(1)試將污水凈化管道的長度L表示為θ的函數(shù),并寫出定義域;
(2)若 ,求此時管道的長度L;
(3)當θ取何值時,污水凈化效果最好?并求出此時管道的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: 的右焦點為F(3,0),過點F的直線交橢圓E于A、B兩點.若AB的中點坐標為(1,﹣1),則E的方程為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設直線l的方程為(a+1)x+y+2﹣a=0(a∈R).
(1)若l在兩坐標軸上的截距相等,求l的方程;
(2)若l不經(jīng)過第二象限,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線的參數(shù)方程為, 為參數(shù)),曲線的極坐標方程為.

(1)將曲線的極坐標方程化為直坐標方程,并說明曲線的形狀;

(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的焦距為2 ,長軸長為4.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)如圖,過坐標原點O作兩條互相垂直的射線,與橢圓C交于A,B兩點.設A(x1 , y1),B(x2 , y2),直線AB的方程為y=﹣2x+m(m>0),試求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有1名女教師和2名男教師參加說題比賽,共有2道備選題目,若每位選手從中有放回地隨機選出一道題進行說題,其中恰有一男一女抽到同一道題的概率為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案