【題目】已知某食品廠需要定期購買食品配料,該廠每天需要食品配料200千克,配料的價格為1.8元/千克,每次購買配料需支付運費236元,每次購買來的配料還需支付保管費用,其標(biāo)準(zhǔn)如下:7天以內(nèi)(含7天),無論重量多少,均按10元/天支付;超出7天以外的天數(shù),根據(jù)實際剩余配料的重量,以每天0.03元/千克支付.
(1)當(dāng)9天購買一次配料時,求該廠用于配料的保管費用是多少元?
(2)設(shè)該廠天購買一次配料,求該廠在這天中用于配料的總費用(元)關(guān)于的函數(shù)關(guān)系式,并求該廠多少天購買一次配料才能使平均每天支付的費用最少?
【答案】理解1:(1)88元;(2)答案見解析.
理解2:(1)78元;(2)答案見解析.
【解析】本題主要考查對二次函數(shù)的最值,二次函數(shù)等知識點的理解和掌握,能根據(jù)題意列出算式是解此題的關(guān)鍵。
(1)當(dāng)9天購買一次時,該廠用于配料的保管費用
元
(2)先分析得到,然后設(shè)該廠x天購買一次配料平均每天支付的費用為元
結(jié)合導(dǎo)數(shù)和均值不等式得到最值。
解:(Ⅰ)當(dāng)9天購買一次時,該廠用于配料的保管費用
元 ………………………………………………2分
(Ⅱ)(1)當(dāng)時,…………………4分
(2)當(dāng)時,
……………………………………………6分
∴…………………………………………………7分
∴設(shè)該廠x天購買一次配料平均每天支付的費用為元
……………………………………………8分
當(dāng)時是上的減函數(shù).
當(dāng)且僅當(dāng)時,有最小值(元)
當(dāng)時=≥393
當(dāng)且僅當(dāng)時取等號
(注:兩段上的最值錯一個扣一分)。
∵∴當(dāng)時有最小值393元 …………………………12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M:x2+(y﹣4)2=4,點P是直線l:x﹣2y=0上的一動點,過點P作圓M的切線PA、PB,切點為A、B.
(1)當(dāng)切線PA的長度為2 時,求點P的坐標(biāo);
(2)若△PAM的外接圓為圓N,試問:當(dāng)P運動時,圓N是否過定點?若存在,求出所有的定點的坐標(biāo);若不存在,說明理由;
(3)求線段AB長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的圓錐中,OP是圓錐的高,AB是底面圓的直徑,點C是弧AB的中點,E是線段AC的中點,D是線段PB的中點,且PO=2,OB=1.
(1)試在PB上確定一點F,使得EF∥面COD,并說明理由;
(2)求點A到面COD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有以下命題:
①如果向量 , 與任何向量不能構(gòu)成空間向量的一組基底,那么 , 的關(guān)系是不共線;
②O,A,B,C為空間四點,且向量 , , 不構(gòu)成空間的一個基底,則點O,A,B,C一定共面;
③已知向量 , , 是空間的一個基底,則向量 + , ﹣ , 也是空間的一個基底;
④△ABC中,A>B的充要條件是sinA>sinB.
其中正確的命題個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中, ,且對任意正整數(shù)都成立,數(shù)列的前項和為.
(1)若,且,求;
(2)是否存在實數(shù),使數(shù)列是公比為1的等比數(shù)列,且任意相鄰三項按某順序排列后成等差數(shù)列,若存在,求出所有的值;若不存在,請說明理由;
(3)若,求.(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,定點,點為圓上的動點,點在直線上,點在直線上,且滿足.
(1)求點的軌跡的方程;
(2)過點作斜率為的直線,與曲線交于兩點, 是坐標(biāo)原點,是否存在這樣的直線,使得,若存在,求出直線的斜率的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后隨機(jī)投擲2枚正方體骰子,其中x表示第1枚骰子出現(xiàn)的點數(shù),y表示第2枚骰子出現(xiàn)的點數(shù),
(1)求點P(x,y)在直線y=x﹣1上的概率;
(2)求點P(x,y)滿足y2<4x的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
(1)當(dāng)a為何值時,直線l與圓C相切;
(2)當(dāng)直線l與圓C相交于A、B兩點,且AB=2 時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家為了了解某新產(chǎn)品使用者的年齡情況,現(xiàn)隨機(jī)調(diào)査100 位使用者的年齡整理后畫出的頻率分布直方圖如圖所示.
(1)求100名使用者中各年齡組的人數(shù),并利用所給的頻率分布直方圖估計所有使用者的平均年齡;
(2)若已從年齡在的使用者中利用分層抽樣選取了6人,再從這6人中選出2人,求這2人在不同的年齡組的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com