分析 直接利用新定義,列出關系式求解即可.
解答 解:設集合A={a1,a2,…,an}(其中ai∈R,i=1,2,…,n),a0為常數(shù),
定義:ω=$\frac{1}{n}$[sin2(a1-a0)+sin2(a2-a0)+…+sin2(an-a0)]為集合A相對a0的“正弦方差”,
則集合$\left\{{\frac{π}{2},π}\right\}$相對a0的“正弦方”為:$\frac{1}{2}$(sin2($\frac{π}{2}$-a0)+sin2(π-a0))=$\frac{1}{2}$(cos2a0+sin2a0)=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$
點評 本題考查新定義的應用,三角函數(shù)的化簡求值,考查計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{1}{2}$,+∞) | B. | [2,+∞) | C. | (0,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com