【題目】設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),橢圓E:(a≥b>0)的右頂點(diǎn)為A,上頂點(diǎn)為B,過(guò)點(diǎn)O且斜率為的直線與直線AB相交M,且.
(Ⅰ)求橢圓E的離心率e;
(Ⅱ)PQ是圓C:(x-2)2+(y-1)2=5的一條直徑,若橢圓E經(jīng)過(guò)P,Q兩點(diǎn),求橢圓E的方程.
【答案】(1) ;(2) .
【解析】試題分析:(1)利用OM的斜率為,布列方程,解出離心率;(2)利用弦長(zhǎng)公式,結(jié)合維達(dá)定理,布列方程,結(jié)合上一問(wèn)的離心率,易得橢圓方程.
試題解析:
(Ⅰ)∵A(a,0),B(0,b),,所以M(,).
∴,解得a=2b,
于是,∴橢圓E的離心率e為.
(Ⅱ)由(Ⅰ)知a=2b,∴橢圓E的方程為即x2+4y2=4b2(1)
依題意,圓心C(2,1)是線段PQ的中點(diǎn),且.
由對(duì)稱性可知,PQ與x軸不垂直,設(shè)其直線方程為y=k(x-2)+1,代入(1)得:
(1+4k2)x2-8k(2k-1)x+4(2k-1)2-4b2=0
設(shè)P(x1,y1),Q(x2,y2),則,,
由得,解得.
從而x1x2=8-2b2.于是
.
解得:b2=4,a2=16,∴橢圓E的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為七檔(五級(jí)),相對(duì)應(yīng)空氣質(zhì)量的七個(gè)類別,指數(shù)越大,說(shuō)明污染的情況越嚴(yán)重,對(duì)人體危害越大.
指數(shù) | 級(jí)別 | 類別 | 戶外活動(dòng)建議 |
Ⅰ | 優(yōu) | 可正;顒(dòng) | |
Ⅱ | 良 | ||
Ⅲ | 輕微污染 | 易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應(yīng)減少體積消耗和戶外活動(dòng). | |
輕度污染 | |||
Ⅳ | 中度污染 | 心臟病和肺病患者癥狀顯著加劇,運(yùn)動(dòng)耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應(yīng)減少體力活動(dòng). | |
中度重污染 | |||
Ⅴ | 重污染 | 健康人運(yùn)動(dòng)耐受力降低,由明顯強(qiáng)烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應(yīng)當(dāng)留在室內(nèi),避免體力消耗,一般人群應(yīng)盡量減少戶外活動(dòng). |
現(xiàn)統(tǒng)計(jì)邵陽(yáng)市市區(qū)2016年1月至11月連續(xù)60天的空氣質(zhì)量指數(shù),制成如圖所示的頻率分布直方圖.
(1)求這60天中屬輕度污染的天數(shù);
(2)求這60天空氣質(zhì)量指數(shù)的平均值;
(3)一般地,當(dāng)空氣質(zhì)量為輕度污染或輕度污染以上時(shí)才會(huì)出現(xiàn)霧霾天氣,且此時(shí)出現(xiàn)霧霾天氣的概率為,請(qǐng)根據(jù)統(tǒng)計(jì)數(shù)據(jù),求在未來(lái)2天里,邵陽(yáng)市恰有1天出現(xiàn)霧霾天氣的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差(°C) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?
(注:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,均值與方差都不變;
②設(shè)有一個(gè)回歸方程,變量x增加一個(gè)單位時(shí),y平均增加3個(gè)單位;
③線性回歸方程必經(jīng)過(guò)點(diǎn);
④在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,從獨(dú)立性檢驗(yàn)知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)系時(shí),我們說(shuō)現(xiàn)有100人吸煙,那么其中有99人患肺。渲绣e(cuò)誤的個(gè)數(shù)是( )
A. 0
B. 1
C. 2
D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)將函數(shù)的圖像向右平移個(gè)單位得到函數(shù)的圖像,若,求函數(shù)的值域;
(2)已知,分別為中角的對(duì)邊,且滿足,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M={x|x=m+,m∈Z},N={x|x=-,n∈Z},P={x|x=+,p∈Z},試確定M,N,P之間的關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)求實(shí)數(shù)的值;
(2)若存在,使得不等式成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)在上不存在最值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (m,n∈R)在x=1處取得極值2.
(1)求f(x)的解析式;
(2)k為何值時(shí),方程f(x)-k=0只有1個(gè)根
(3)設(shè)函數(shù)g(x)=x2-2ax+a,若對(duì)于任意x1∈R,總存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com