【題目】空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為七檔(五級(jí)),相對(duì)應(yīng)空氣質(zhì)量的七個(gè)類別,指數(shù)越大,說明污染的情況越嚴(yán)重,對(duì)人體危害越大.
指數(shù) | 級(jí)別 | 類別 | 戶外活動(dòng)建議 |
Ⅰ | 優(yōu) | 可正;顒(dòng) | |
Ⅱ | 良 | ||
Ⅲ | 輕微污染 | 易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應(yīng)減少體積消耗和戶外活動(dòng). | |
輕度污染 | |||
Ⅳ | 中度污染 | 心臟病和肺病患者癥狀顯著加劇,運(yùn)動(dòng)耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應(yīng)減少體力活動(dòng). | |
中度重污染 | |||
Ⅴ | 重污染 | 健康人運(yùn)動(dòng)耐受力降低,由明顯強(qiáng)烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應(yīng)當(dāng)留在室內(nèi),避免體力消耗,一般人群應(yīng)盡量減少戶外活動(dòng). |
現(xiàn)統(tǒng)計(jì)邵陽市市區(qū)2016年1月至11月連續(xù)60天的空氣質(zhì)量指數(shù),制成如圖所示的頻率分布直方圖.
(1)求這60天中屬輕度污染的天數(shù);
(2)求這60天空氣質(zhì)量指數(shù)的平均值;
(3)一般地,當(dāng)空氣質(zhì)量為輕度污染或輕度污染以上時(shí)才會(huì)出現(xiàn)霧霾天氣,且此時(shí)出現(xiàn)霧霾天氣的概率為,請(qǐng)根據(jù)統(tǒng)計(jì)數(shù)據(jù),求在未來2天里,邵陽市恰有1天出現(xiàn)霧霾天氣的概率.
【答案】(1) ;(2) ;(3) .
【解析】試題分析: (1)根據(jù)頻率分布直方圖得各小長(zhǎng)方形面積等于對(duì)應(yīng)區(qū)間的概率,先求出60天中屬輕度污染對(duì)應(yīng)區(qū)間的概率,再根據(jù)頻數(shù)等于總數(shù)與對(duì)應(yīng)頻率乘積得所求天數(shù),(2)根據(jù)平均值等于各區(qū)間組中值與對(duì)應(yīng)概率乘積的和,可求出平均值,(3)先求出現(xiàn)霧霾天氣的概率:空氣質(zhì)量為輕度污染或輕度污染以上對(duì)應(yīng)概率的,再根據(jù)獨(dú)立重復(fù)試驗(yàn)確定2天中恰有1天出現(xiàn)霧霾天氣的概率.
試題解析:(1)依題意知,輕度污染即空氣質(zhì)量指數(shù)在之間,共有天.
(2)由直方圖知60天空氣質(zhì)量指數(shù)的平均值為
.
(3)空氣質(zhì)量為輕度污染或輕度污染以上的概率,
∴出現(xiàn)霧霾概率為,
∴未來2天里,恰有1天為霧霾天氣的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上的動(dòng)點(diǎn)滿足到點(diǎn)的距離比到直線的距離小1.
(1)求曲線的方程;
(2)動(dòng)點(diǎn)在直線上,過點(diǎn)分別作曲線的切線,切點(diǎn)為.直線是否恒過定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C是△ABC的三個(gè)內(nèi)角,向量m=(-1, ),n=(cosA,sinA),且m·n=1.
(1)求角A;
(2)若=-3,求tanC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD和正方形ABEF的邊長(zhǎng)都是1,并且平面ABCD⊥平面ABEF,點(diǎn)M在AC上移動(dòng),點(diǎn)N在BF上移動(dòng).若|CM|=|BN|=a(0<a< ).
(1)求MN的長(zhǎng)度;
(2)當(dāng)a為何值時(shí),MN的長(zhǎng)度最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=.
(1)求f(2)與f, f(3)與f;
(2)由(1)中求得結(jié)果,你能發(fā)現(xiàn)f(x)與f有什么關(guān)系?并證明你的發(fā)現(xiàn);
(3)求f(1)+f(2)+f(3)+…+f(2013)+f+f+…+f.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次國(guó)際學(xué)術(shù)會(huì)議上,來自四個(gè)國(guó)家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:
甲是中國(guó)人,還會(huì)說英語.
乙是法國(guó)人,還會(huì)說日語.
丙是英國(guó)人,還會(huì)說法語.
丁是日本人,還會(huì)說漢語.
戊是法國(guó)人,還會(huì)說德語.
則這五位代表的座位順序應(yīng)為( )
A. 甲丙丁戊乙 B. 甲丁丙乙戊
C. 甲乙丙丁戊 D. 甲丙戊乙丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線: ,曲線: (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系.
(Ⅰ)求曲線, 的極坐標(biāo)方程;
(Ⅱ)曲線: (為參數(shù), , )分別交, 于, 兩點(diǎn),當(dāng)取何值時(shí), 取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)在區(qū)間上單調(diào)遞增;函數(shù)在其定義域上存在極值.
(1)若為真命題,求實(shí)數(shù)的取值范圍;
(2)如果“或”為真命題,“且”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),橢圓E:(a≥b>0)的右頂點(diǎn)為A,上頂點(diǎn)為B,過點(diǎn)O且斜率為的直線與直線AB相交M,且.
(Ⅰ)求橢圓E的離心率e;
(Ⅱ)PQ是圓C:(x-2)2+(y-1)2=5的一條直徑,若橢圓E經(jīng)過P,Q兩點(diǎn),求橢圓E的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com