【題目】“地攤經(jīng)濟”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號,某生產(chǎn)企業(yè)積極響應號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
試銷單價(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量(件) | 84 | 83 | 80 | 75 | 68 |
已知,,,
(1)試求,若變量,具有線性相關關系,求產(chǎn)品銷量(件)關于試銷單價(元)的線性回歸方程;
(2)用表示用(1)中所求的線性回歸方程得到的與對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取2個,求恰好2個都是“好數(shù)據(jù)”的概率.
(參考公式:線性回歸方程中,的最小二乘估計分別為,)
【答案】(1);;(2).
【解析】
(1)根據(jù),可求得,再由散點圖判斷變量,具有線性相關關系,然后分別求得的值,寫出線性回歸方程.
(2)利用(1)中所求的線性回歸方程,分別求得的估計值,再根據(jù) 找出“好數(shù)據(jù)”,利用古典概型的概率求法求解.
(1)因為,
所以,
解得.
散點圖如下:
由散點圖可知:變量,具有線性相關關系,
,,
所以線性回歸方程為.
(2)由(1)中所求的線性回歸方程可得:
當時,;當時,;當時,;當時,;當時,;當時,.
與銷售數(shù)據(jù)對比可知滿足的共有3個“好數(shù)據(jù)”:、、.
從6個中選兩個共有個不同的選法,恰好2個都是“好數(shù)據(jù)”的情況共種,
所以從6個銷售數(shù)據(jù)中任取2個,求恰好2個都是“好數(shù)據(jù)”的概率:.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù),試研究函數(shù)的極值情況;
(2)記函數(shù)在區(qū)間內(nèi)的零點為,記,若在區(qū)間內(nèi)有兩個不等實根,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】第23屆冬季奧運會于2018年2月9日至2月25日在韓國平昌舉行,期間正值我市學校放寒假,寒假結束后,某校工會對全校教職工在冬季奧運會期間每天收看比賽轉(zhuǎn)播的時間作了一次調(diào)查,得到如下頻數(shù)分布表:
收看時間(單位:小時) | ||||||
收看人數(shù) | 14 | 30 | 16 | 28 | 20 | 12 |
(1)若將每天收看比賽轉(zhuǎn)播時間不低于3小時的教職工定義為“體育達人”,否則定義為“非體育達人”,請根據(jù)頻數(shù)分布表補全列聯(lián)表:
男 | 女 | 合計 | |
體育達人 | 40 | ||
非體育達人 | 30 | ||
合計 |
并判斷能否有的把握認為該校教職工是否為“體育達人”與“性別”有關;
(2)在全校“體育達人”中按性別分層抽樣抽取6名,再從這6名“體育達人”中選取2名作冬奧會知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“克拉茨猜想”又稱“猜想”,是德國數(shù)學家洛薩克拉茨在年世界數(shù)學家大會上公布的一個猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘加,不斷重復這樣的運算,經(jīng)過有限步后,最終都能夠得到,得到即終止運算,己知正整數(shù)經(jīng)過次運算后得到,則的值為( )
A.或B.或C.D.或或
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)寫出曲線的極坐標方程和直線的直角坐標方程;
(2)若射線與曲線交于兩點,與直線交于點,射線與曲線交于兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《周髀算經(jīng)》是中國最古老的天文學和數(shù)學著作,書中提到:從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣的日影子長依次成等差數(shù)列,若冬至、立春、春分的日影子長的和是37.5尺,芒種的日影子長為4.5尺,則立夏的日影子長為:( )
A.15.5尺B.12.5尺C.9.5尺D.6.5尺
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,P為直線:上的動點,動點Q滿足,且原點O在以為直徑的圓上.記動點Q的軌跡為曲線C
(1)求曲線C的方程:
(2)過點的直線與曲線C交于A,B兩點,點D(異于A,B)在C上,直線,分別與x軸交于點M,N,且,求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com