5.中國古代數(shù)學著作《算法統(tǒng)綜》中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔仔細算相還”.其大意為:“有一個走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地”.則該人第五天走的路程為(  )
A.48里B.24里C.12里D.6里

分析 由題意可知,每天走的路程里數(shù)構(gòu)成以$\frac{1}{2}$為公比的等比數(shù)列,由S6=378求得首項,再由等比數(shù)列的通項公式求得該人第五天走的路程.

解答 解:記每天走的路程里數(shù)為{an},
由題意知{an}是公比$\frac{1}{2}$的等比數(shù)列,
由S6=378,得${S}_{6}=\frac{{a}_{1}(1-\frac{1}{{2}^{6}})}{1-\frac{1}{2}}$=378,
解得:a1=192,
∴${a}_{5}=192×\frac{1}{{2}^{4}}$=12(里).
故選:C.

點評 本題考查等比數(shù)列的通項公式的運用,是基礎(chǔ)題,解題時要認真審題,注意等比數(shù)列的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A={x|log2x>0},B={x|x<2},則( 。
A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,∠BAC=60°,E,F(xiàn)分別是AP,AC的中點,點D在棱AB上,且AD=AC.求證:
(1)EF∥平面PBC;
(2)DF⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+2y-3≥0\\ 2x+y-6≤0\end{array}\right.$,若2x-y≥m恒成立,則實數(shù)m的取值范圍是(-∞,-$\frac{2}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合A={x|x2-6x+5≤0},B={x|x<a+1}.若A∩B≠∅,則a的取值范圍為( 。
A.(0,+∞)B.[0,+∞)C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知數(shù)列{an}的前n項和Sn,若an+1+(-1)nan=n,則S40=420.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若集合A={x|1≤2x≤16},B={x|log3(x2-2x)>1},則A∩B等于( 。
A.(3,4]B.[3,4]C.(-∞,0)∪(0,4]D.(-∞,-1)∪(0,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=x+alnx與g(x)=3-$\frac{x}$的圖象在點(1,1)處有相同的切線.
(1)若函數(shù)y=2(x+m)與y=f(x)的圖象有兩個交點,求實數(shù)m的取值范圍;
(2)設(shè)函數(shù)F(x)=3(x-$\frac{m}{2}$)+$\frac{m}{2}$g(x)-2f(x)有兩個極值點x1,x2,且x1<x2,求證:F(x2)<x2-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.要得到函數(shù)y=sin2x的圖象,只要將函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象( 。
A.向左平移$\frac{π}{6}$單位即可B.向右平移$\frac{π}{6}$單位即可
C.向右平移$\frac{π}{3}$單位即可D.向左平移$\frac{π}{3}$單位即可

查看答案和解析>>

同步練習冊答案