A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
分析 由題意求得c=$\sqrt{7}$a,利用雙曲線的定義,求得丨BF1丨=2a,丨BF2丨=4a,利用余弦定理求得cosBF1F2,即可求得tanBF1F2,求得直線l的斜率.
解答 解:由題意可知e=$\frac{c}{a}$=$\sqrt{7}$,c=$\sqrt{7}$a,
由雙曲線的定義可知:丨AF1丨-丨AF2丨=2a,丨AB|=|AF2|,
則丨BF1丨=2a,丨BF2丨-丨BF1丨=2a,即丨BF2丨=4a,
在△BF1F2中,由余弦定理可知:
cosBF1F2=$\frac{丨B{F}_{1}{丨}^{2}+丨{F}_{1}{F}_{2}{丨}^{2}-丨B{F}_{1}{丨}^{2}}{2丨B{F}_{1}丨丨{F}_{1}{F}_{2}丨}$=$\frac{({2a)}^{2}+(2\sqrt{7}{a)}^{2}-(4a)^{2}}{2×2a×2\sqrt{7}a}$=$\frac{2\sqrt{7}}{7}$,
則tanBF1F2=$\frac{\sqrt{3}}{2}$,
直線l的斜率$\frac{\sqrt{3}}{2}$,
故選D.
點評 本題考查雙曲線的定義,余弦定理,考查數(shù)形結(jié)合思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?a≥-1,ln(en+1)≤$\frac{1}{2}$ | B. | ?a<-1,ln(en+1)≤$\frac{1}{2}$ | C. | ?a≥-1,ln(en+1)≤$\frac{1}{2}$ | D. | ?a<-1,ln(en+1)≤$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com