【題目】如圖,四邊形是矩形平面.

(1)證明:平面平面;

(2)求二面角的余弦值.

【答案】1見解析(2) .

【解析】試題分析:1根據(jù)可得,平面,可得,由線面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2以過的垂線為軸,以,軸,建立空間直角坐標(biāo)系,分別求得平面的法向量與平面的法向量利用空間向量夾角余弦公式可得結(jié)果.

試題解析:(1)證明:設(shè),

因?yàn)樗倪呅?/span>是矩形, ,

所以,

,所以,

因?yàn)?/span>,所以,

平面,

所以,而,所以平面.

由面面垂直的判定定理可得平面平面

(2)建立如圖所示的空間直角坐標(biāo)系,

由題意可得,

設(shè)平面的法向量,

,取,即,

設(shè)平面的法向量,

,取,即,

設(shè)平面和平面所成的二面角為,

.

【方法點(diǎn)晴】本題主要考查面面垂直的判定定理以及利用空間向量求二面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上是單調(diào)增函數(shù),則實(shí)數(shù)的取值范圍為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校舉行的航天知識(shí)競賽中,參與競賽的文科生與理科生人數(shù)之比為13,且成績分布在[40,100],分?jǐn)?shù)在80以上(80)的同學(xué)獲獎(jiǎng).按文、理科用分層抽樣的方法抽取200人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.

(1)a的值,并計(jì)算所抽取樣本的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)填寫下面的2×2列聯(lián)表,并判斷能否有超過95%的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文、理科有關(guān)”?

文科生

理科生

合計(jì)

獲獎(jiǎng)

5

不獲獎(jiǎng)

合計(jì)

200

附表及公式:

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是指企業(yè)的校園,地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是一種分時(shí)租賃模式,某共享單車企業(yè)為更好服務(wù)社會(huì),隨機(jī)調(diào)查了100人,統(tǒng)計(jì)了這100人每日平均騎行共享單車的時(shí)間(單位:分鐘),由統(tǒng)計(jì)數(shù)據(jù)得到如下頻率分布直方圖,已知騎行時(shí)間在三組對(duì)應(yīng)的人數(shù)依次成等差數(shù)列

(1)求頻率分布直方圖中的值.

(2)若將日平均騎行時(shí)間不少于80分鐘的用戶定義為“忠實(shí)用戶”,將日平均騎行時(shí)間少于40分鐘的用戶為“潛力用戶”,現(xiàn)從上述“忠實(shí)用戶”與“潛力用戶”的人中按分層抽樣選出5人,再從這5人中任取3人,求恰好1人為“忠實(shí)用戶”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,DAB=60°.

(1)求證:直線AM∥平面PNC;

(2)求二面角D﹣PC﹣N的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(1)求的取值范圍;

(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一兒童游樂場擬建造一個(gè)“蛋筒”型游樂設(shè)施,其軸截面如圖中實(shí)線所示. 是等腰梯形, 米, 的延長線上, 為銳角). 圓都相切,且其半徑長為米. 是垂直于的一個(gè)立柱,則當(dāng)的值設(shè)計(jì)為多少時(shí),立柱最矮?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856310)

已知函數(shù)f(x)=x+ln x(a∈R).

(Ⅰ)當(dāng)a=2時(shí), 求函數(shù)f(x)的單調(diào)區(qū)間;

(Ⅱ)若關(guān)于x的函數(shù)g(x)=f(x)+ln x+2e(e為自然對(duì)數(shù)的底數(shù))有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角所對(duì)的邊分別為,且, 的中點(diǎn),且, ,則的最短邊的邊長為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案