【題目】已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求的取值范圍;
(2)證明:
【答案】(1) (2)見解析
【解析】試題分析:
(1)將問題轉(zhuǎn)化為方程在有兩個(gè)不同根處理,令,求出,令可得的取值范圍.(2)由(1)知當(dāng)時(shí), 在恒成立,令,可得n個(gè)不等式,將不等式兩邊分別相加可得結(jié)論.
試題解析:
(1)由題意知,函數(shù)的定義域?yàn)?/span>.
∵,
∴.
∵函數(shù) 在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn),
∴方程在有兩個(gè)不同根.
令,則,
①當(dāng)時(shí),則恒成立,故在內(nèi)為增函數(shù),顯然不成立.
②當(dāng)時(shí),
則當(dāng)時(shí), ,故在內(nèi)為增函數(shù);
當(dāng)時(shí), ,故在內(nèi)為減函數(shù).
所以當(dāng)時(shí), 有極大值,也為最大值,且.
要使方程有兩個(gè)不等實(shí)根,
則需,
解得.
綜上可知的取值范圍為.
(2)由(1)知:當(dāng)時(shí), 在上恒成立,
∴,
,
,
┄
,
將以上個(gè)式子相加得:
,
即,
又,
所以,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別是a,b,c,且2acosA=bcosC+ccosB.
(Ⅰ)求A的大。
(Ⅱ)若a=2,求b+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)在區(qū)間上的極小值等于,求a的值;
(2)令,設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x++2(m為實(shí)常數(shù)).
(1)若函數(shù)f(x)圖象上動點(diǎn)P到定點(diǎn)Q(0,2)的距離的最小值為,求實(shí)數(shù)m的值;
(2)若函數(shù)y=f(x)在區(qū)間[2,+∞)上是增函數(shù),試用函數(shù)單調(diào)性的定義求實(shí)數(shù)m的取值范圍;
(3)設(shè)m<0,若不等式f(x)≤kx在x∈[,1]時(shí)有解,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a∈R).
(Ⅰ)若a=1,求曲線f(x)在點(diǎn)(e,f(e))處的切線方程;
(Ⅱ)求f(x)的極值;
(Ⅲ)若函數(shù)f(x)的圖象與函數(shù)g(x)=1的圖象在區(qū)間(0,e2]上有公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知(a4-1)3+2 016(a4-1)=1,(a2 013-1)3+2 016·(a2 013-1)=-1,則下列結(jié)論正確的是( )
A. S2 016=-2 016,a2 013>a4
B. S2 016=2 016,a2 013>a4
C. S2 016=-2 016,a2 013<a4
D. S2 016=2 016,a2 013<a4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856317)為了調(diào)查“小學(xué)成績”與“中學(xué)成績”兩個(gè)變量之間是否存在相關(guān)關(guān)系,某科研機(jī)構(gòu)將所調(diào)查的結(jié)果統(tǒng)計(jì)如下表所示:
中學(xué)成績不優(yōu)秀 | 中學(xué)成績優(yōu)秀 | 總計(jì) | |
小學(xué)成績優(yōu)秀 | 5 | 20 | 25 |
小學(xué)成績不優(yōu)秀 | 10 | 5 | 15 |
總計(jì) | 15 | 25 | 40 |
則下列說法正確的是( )
參考數(shù)據(jù):
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k0 | 0.46 | 0.71 | 1.32 | 2.07 | 2.71 | 3.84 | 5.024 | 6.635 | 7.879 | 10.828 |
A. 在犯錯(cuò)誤的概率不超過0.1的前提下,認(rèn)為“小學(xué)成績與中學(xué)成績無關(guān)”
B. 在犯錯(cuò)誤的概率不超過0.1的前提下,認(rèn)為“小學(xué)成績與中學(xué)成績有關(guān)”
C. 在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為“小學(xué)成績與中學(xué)成績無關(guān)”
D. 在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為“小學(xué)成績與中學(xué)成績有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來隨著我國在教育利研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.伴隨著國內(nèi)市場增速放緩,國內(nèi)確實(shí)力企業(yè)紛紛進(jìn)行海外布局,第二輪企業(yè)出海潮到來,如在智能手機(jī)行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機(jī)公司一直默默拓展海外市場,在海外共設(shè)30多個(gè)分支機(jī)構(gòu),需要國內(nèi)公司外派大量70后、80后中青年員工.該企業(yè)為了解這兩個(gè)年齡層員工是否愿意被外派上作的態(tài)度,按分層抽樣的方式從70后利80后的員工中隨機(jī)調(diào)查了100位,得到數(shù)據(jù)如下表:
愿意被外派 | 不愿意被外派 | 合計(jì) | |
70后 | 20 | 20 | 40 |
80后 | 40 | 20 | 60 |
合計(jì) | 60 | 40 | 100 |
(1)根據(jù)凋查的數(shù)據(jù),是否有的把握認(rèn)為“是否愿意被外派與年齡有關(guān)”,并說明理由;
(2)該公司參觀駐海外分支機(jī)構(gòu)的交流體驗(yàn)活動,擬安排4名參與調(diào)查的70后員工參加,70后的員工中有愿意被外派的3人和不愿意被外派的3人報(bào)名參加,現(xiàn)采用隨機(jī)抽樣方法從報(bào)名的員工中選4人,求選到愿意被外派人數(shù)不少于不愿意被外派人數(shù)的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(參考公式: ,其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com